RESUMO
Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Política Ambiental/tendências , Atividades Humanas/tendências , Dieta , Dieta Vegetariana/tendências , Abastecimento de Alimentos , Humanos , Desenvolvimento Sustentável/tendênciasRESUMO
Reducing the rate of global biodiversity loss is a major challenge facing humanity1, as the consequences of biological annihilation would be irreversible for humankind2-4. Although the ongoing degradation of ecosystems5,6 and the extinction of species that comprise them7,8 are now well-documented, little is known about the role that remaining wilderness areas have in mitigating the global biodiversity crisis. Here we model the persistence probability of biodiversity, combining habitat condition with spatial variation in species composition, to show that retaining these remaining wilderness areas is essential for the international conservation agenda. Wilderness areas act as a buffer against species loss, as the extinction risk for species within wilderness communities is-on average-less than half that of species in non-wilderness communities. Although all wilderness areas have an intrinsic conservation value9,10, we identify the areas on every continent that make the highest relative contribution to the persistence of biodiversity. Alarmingly, these areas-in which habitat loss would have a more-marked effect on biodiversity-are poorly protected. Given globally high rates of wilderness loss10, these areas urgently require targeted protection to ensure the long-term persistence of biodiversity, alongside efforts to protect and restore more-degraded environments.
Assuntos
Biodiversidade , Extinção Biológica , Modelos Biológicos , Meio Selvagem , Animais , Conservação dos Recursos Naturais , Comportamento de Redução do RiscoRESUMO
Degradation and loss of natural habitat is the major driver of the current global biodiversity crisis. Most habitat conservation efforts to date have targeted small areas of highly threatened habitat, but emerging debate suggests that retaining large intact natural systems may be just as important. We reconcile these perspectives by integrating fine-resolution global data on habitat condition and species assemblage turnover to identify Earth's high-value biodiversity habitat. These are areas in better condition than most other locations predicted to have once supported a similar assemblage of species and are found within both intact regions and human-dominated landscapes. However, only 18.6% of this high-value habitat is currently protected globally. Averting permanent biodiversity loss requires clear, spatially explicit targets for retaining these unprotected high-value habitats.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Planeta Terra , Animais , Ecossistema , HumanosRESUMO
Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, we present a fine-resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to >52 million records of >254 thousand plant species, with the species-area relationship, to estimate the effect of land-use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land-use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio-economic development can potentially bring extinction risk back to pre-2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land-use change. In this case, the estimated number of species committed to extinction increases by 3.7-4.5 times compared to land-use-only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land-use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre-industrial times is observed.
Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Conservação dos Recursos Naturais , Previsões , PlantasRESUMO
Estimating the degree of individual specialisation is likely to be sensitive to the methods used, as they record individuals' resource use over different time-periods. We combined animal-borne video cameras, GPS/TDR loggers and stable isotope values of plasma, red cells and sub-sampled whiskers to investigate individual foraging specialisation in female Australian fur seals (Arctocephalus pusillus doriferus) over various timescales. Combining these methods enabled us to (1) provide quantitative information on individuals' diet, allowing the identification of prey, (2) infer the temporal consistency of individual specialisation, and (3) assess how different methods and timescales affect our estimation of the degree of specialisation. Short-term inter-individual variation in diet was observed in the video data (mean pairwise overlap = 0.60), with the sampled population being composed of both generalist and specialist individuals (nested network). However, the brevity of the temporal window is likely to artificially increase the level of specialisation by not recording the entire diet of seals. Indeed, the correlation in isotopic values was tighter between the red cells and whiskers (mid- to long-term foraging ecology) than between plasma and red cells (short- to mid-term) (R(2) = 0.93-0.73 vs. 0.55-0.41). δ(13)C and δ(15)N values of whiskers confirmed the temporal consistency of individual specialisation. Variation in isotopic niche was consistent across seasons and years, indicating long-term habitat (WIC/TNW = 0.28) and dietary (WIC/TNW = 0.39) specialisation. The results also highlight time-averaging issues (under-estimation of the degree of specialisation) when calculating individual specialisation indices over long time-periods, so that no single timescale may provide a complete and accurate picture, emphasising the benefits of using complementary methods.
Assuntos
Isótopos de Carbono/análise , Dieta , Comportamento Alimentar/fisiologia , Otárias/fisiologia , Isótopos de Nitrogênio/análise , Vibrissas/química , Gravação em Vídeo , Animais , Austrália , Ecossistema , Eritrócitos/química , Feminino , Estações do Ano , Fatores de TempoRESUMO
Infectious zoonotic disease emergence, through spillover events, is of global concern and has the potential to cause significant harm to society, as recently demonstrated by COVID-19. More than 70% of the 400 infectious diseases that emerged in the past five decades have a zoonotic origin, including all recent pandemics. There have been several approaches used to predict the risk of spillover through some of the known or suspected infectious disease emergence drivers, largely using correlative approaches. Here, we predict the spatial distribution of spillover risk by approximating general transmission through animal and human interactions. These mass action interactions are approximated through the multiplication of the spatial distribution of zoonotic virus diversity and human population density. Although our results indicate higher risk in regions along the equator and in Southeast Asia where both virus diversity and human population density are high, it should be noted that this is primarily a conceptual exercise. We compared our spillover risk map to key factors, including the model inputs of zoonotic virus diversity estimate map, human population density map, and the spatial distribution of species richness. Despite the limitations of this approach, this viral spillover map is a step towards developing a more comprehensive spillover risk prediction system to inform global monitoring.
RESUMO
Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.
Assuntos
Biodiversidade , Mudança Climática , Extinção BiológicaRESUMO
The highly dynamic nature of the marine environment can have a substantial influence on the foraging behaviour and spatial distribution of marine predators, particularly in pelagic marine systems. However, knowledge of the susceptibility of benthic marine predators to environmental variability is limited. This study investigated the influence of local-scale environmental conditions and large-scale climate indices on the spatial distribution and habitat use in the benthic foraging Australian fur seal (Arctocephalus pusillus doriferus; AUFS). Female AUFS provisioning pups were instrumented with GPS or ARGOS platform terminal transmitter tags during the austral winters of 2001-2019 at Kanowna Island, south-eastern Australia. Individuals were most susceptible to changes in the Southern Oscillation Index that measures the strength of the El Niño Southern Oscillation, with larger foraging ranges, greater distances travelled and more dispersed movement associated with 1-yr lagged La Niña-like conditions. Additionally, the total distance travelled was negatively correlated with the current year sea surface temperature and 1-yr lagged Indian Ocean Dipole, and positively correlated with 1-yr lagged chlorophyll-a concentration. These results suggest that environmental variation may influence the spatial distribution and availability of prey, even within benthic marine systems.
RESUMO
The endangered Galapagos sea lion (GSL, Zalophus wollebaeki) exhibits a range of foraging strategies utilising various dive types including benthic, epipelagic and mesopelagic dives. In the present study, potential prey captures (PPC), prey energy consumption and energy expenditure in lactating adult female GSLs (n = 9) were examined to determine their foraging efficiency relative to the foraging strategy used. Individuals displayed four dive types: (a) epipelagic (<100 m; EP); or (b) mesopelagic (>100 m; MP) with a characteristic V-shape or U-shape diving profile; and (c) shallow benthic (<100 m; SB) or (d) deep benthic (>100 m; DB) with square or flat-bottom dive profiles. These dive types varied in the number of PPC, assumed prey types, and the energy expended. Prey items and their energetic value were assumed from previous GSL diet studies in combination with common habitat and depth ranges of the prey. In comparison to pelagic dives occurring at similar depths, when diving benthically, GSLs had both higher prey energy consumption and foraging energy expenditure whereas PPC rate was lower. Foraging efficiency varied across dive types, with benthic dives being more profitable than pelagic dives. Three foraging trip strategies were identified and varied relative to prey energy consumed, energy expended, and dive behaviour. Foraging efficiency did not significantly vary among the foraging trip strategies suggesting that, while individuals may diverge into different foraging habitats, they are optimal within them. These findings indicate that these three strategies will have different sensitivities to habitat-specific fluctuations due to environmental change.
RESUMO
Substantial variation in foraging strategies can exist within populations, even those typically regarded as generalists. Specializations arise from the consistent exploitation of a narrow behavioral, spatial or dietary niche over time, which may reduce intraspecific competition and influence adaptability to environmental change. However, few studies have investigated whether behavioral consistency confers benefits at the individual and/or population level. While still recovering from commercial sealing overexploitation, Australian fur seals (AUFS; Arctocephalus pusillus doriferus) represent the largest marine predator biomass in south-eastern Australia. During lactation, female AUFS adopt a central-place foraging strategy and are, thus, vulnerable to changes in prey availability. The present study investigated the population-level repeatability and individual consistency in foraging behavior of 34 lactating female AUFS at a south-east Australian breeding colony between 2006 and 2019. Additionally, the influence of individual-level behavioral consistency on indices of foraging success and efficiency during benthic diving was determined. Low to moderate population-level repeatability was observed across foraging behaviors, with the greatest repeatability in the mean bearing and modal dive depth. Individual-level consistency was greatest for the proportion of benthic diving, total distance travelled, and trip duration. Indices of benthic foraging success and efficiency were positively influenced by consistency in the proportion of benthic diving, trip duration and dive rate but not influenced by consistency in bearing to most distal point, dive depth or foraging site fidelity. The results of the present study provide evidence of the benefits of consistency for individuals, which may have flow-on effects at the population level.
RESUMO
Knowledge of the factors shaping the foraging behaviour of species is central to understanding their ecosystem role and predicting their response to environmental variability. To maximise survival and reproduction, foraging strategies must balance the costs and benefits related to energy needed to pursue, manipulate, and consume prey with the nutritional reward obtained. While such information is vital for understanding how changes in prey assemblages may affect predators, determining these components is inherently difficult in cryptic predators. The present study used animal-borne video data loggers to investigate the costs and benefits related to different prey types for female Australian fur seals (Arctocephalus pusillus doriferus), a primarily benthic foraging species in the low productivity Bass Strait, south-eastern Australia. A total of 1,263 prey captures, resulting from 2,027 prey detections, were observed in 84.5 h of video recordings from 23 individuals. Substantial differences in prey pursuit and handling times, gross energy gain and total energy expenditure were observed between prey types. Importantly, the profitability of prey was not significantly different between prey types, with the exception of elasmobranchs. This study highlights the benefit of animal-borne video data loggers for understanding the factors that influence foraging decisions in predators. Further studies incorporating search times for different prey types would further elucidate how profitability differs with prey type.
RESUMO
Understanding the factors which influence foraging behaviour and success in marine mammals is crucial to predicting how their populations may respond to environmental change. The Australian fur seal (Arctocephalus pusillus doriferus, AUFS) is a predominantly benthic forager on the shallow continental shelf of Bass Strait, and represents the greatest biomass of marine predators in south-eastern Australia. The south-east Australian region is experiencing rapid oceanic warming, predicted to lead to substantial alterations in prey diversity, distribution and abundance. In the present study, foraging effort and indices of foraging success and efficiency were investigated in 138 adult female AUFS (970 foraging trips) during the winters of 1998-2019. Large scale climate conditions had a strong influence on foraging effort, foraging success and efficiency. Foraging effort and foraging success were also strongly influenced by winter chlorophyll-a concentrations and sea-surface height anomalies in Bass Strait. The results suggest increasing foraging effort and decreasing foraging success and efficiency under anticipated environmental conditions, which may have population-level impacts.
Assuntos
Meio Ambiente , Comportamento Alimentar , Otárias/fisiologia , Animais , Austrália , Biomassa , Ecossistema , Feminino , Oceanos e Mares , Densidade Demográfica , Comportamento Predatório , Salinidade , TemperaturaRESUMO
Recent studies have documented that little penguins (Eudyptula minor) associate at sea, displaying synchronised diving behaviour throughout a foraging trip. However, previous observations were limited to a single foraging trip where only a small number of individuals were simultaneously tracked. Consequently, it is not known whether coordinated behaviour is consistent over time, or what factors influence it. In the present study, breeding adults were concurrently instrumented with GPS and dive behaviour data loggers for at least 2 consecutive foraging trips during guard and post-guard stage at two breeding colonies (London Bridge and Gabo Island, south-eastern Australia) of contrasting population size (approximately 100 and 30,000-40,000, respectively). At both colonies, individuals were sampled in areas of comparable nesting density and spatial area. At London Bridge, where individuals use a short (23 m) common pathway from their nests to the shoreline, > 90% (n = 42) of birds displayed foraging associations and 53-60% (n = 20) maintained temporally consistent associations with the same conspecifics. Neither intrinsic (sex, size or body condition) nor extrinsic (nest proximity) factors were found to influence foraging associations. However, individuals that departed from the colony at a similar time were more likely to associate during a foraging trip. At Gabo Island, where individuals use a longer (116 m) pathway with numerous tributaries to reach the shoreline, few individuals (< 31%; n = 13) from neighbouring nests associated at sea and only 1% (n = 1) maintained associations over subsequent trips. However, data from animal-borne video cameras indicated individuals at this colony displayed foraging associations of similar group size to those at London Bridge. This study reveals that group foraging behaviour occurs at multiple colonies and the pathways these individuals traverse with conspecifics may facilitate opportunistic group formation and resulting in foraging associations irrespective of nesting proximity and other factors.
Assuntos
Comportamento Alimentar , Spheniscidae/fisiologia , AnimaisRESUMO
Individual specialisations, which involve the repetition of specific behaviours or dietary choices over time, have been suggested to benefit animals by avoiding competition with conspecifics and increasing individual foraging efficiency. Among seabirds, resident and benthic species are thought to be good models to study inter-individual variation as they repetitively exploit the same environment. We investigated foraging behaviour, isotopic niche and diet in the Kerguelen shag Phalacrocorax verrucosus during both the incubation and chick-rearing periods for the same individuals to determine the effect of sex, breeding stage, body mass and morphometrics on mean foraging metrics and their consistency. There were large differences between individuals in foraging behaviour and consistency, with strong individual specialisations in dive depths and heading from the colony. Stable isotopes revealed specialisations in feeding strategies, across multiple temporal scales. Specifically, individuals showed medium term specialisations in feeding strategies during the breeding season, as well as long-term consistency. A clustering analysis revealed 4 different foraging strategies displaying significantly different δ15N values and body masses. There were no sex or stage biases to clusters and individuals in different clusters did not differ in their morphology. Importantly, the results suggest that the different strategies emphasized were related to individual prey preferences rather than intrinsic characteristics.
Assuntos
Comportamento Animal , Aves , Animais , Comportamento Alimentar , Isótopos , Comportamento Predatório , Tecnologia de Sensoriamento RemotoRESUMO
Aim: Agricultural intensification and urbanization are important drivers of biodiversity change in Europe. Different aspects of bee community diversity vary in their sensitivity to these pressures, as well as independently influencing ecosystem service provision (pollination). To obtain a more comprehensive understanding of human impacts on bee diversity across Europe, we assess multiple, complementary indices of diversity. Location: One Thousand four hundred and forty six sites across Europe. Methods: We collated data on bee occurrence and abundance from the published literature and supplemented them with the PREDICTS database. Using Rao's Quadratic Entropy, we assessed how species, functional and phylogenetic diversity of 1,446 bee communities respond to land-use characteristics including land-use class, cropland intensity, human population density and distance to roads. We combined these models with statistically downscaled estimates of land use in 2005 to estimate and map-at a scale of approximately 1 km2-the losses in diversity relative to semi-natural/natural baseline (the predicted diversity of an uninhabited grid square, consisting only of semi-natural/natural vegetation). Results: We show that-relative to the predicted local diversity in uninhabited semi-natural/natural habitat-half of all EU27 countries have lost over 10% of their average local species diversity and two-thirds of countries have lost over 5% of their average local functional and phylogenetic diversity. All diversity measures were generally lower in pasture and higher-intensity cropland than in semi-natural/natural vegetation, but facets of diversity showed less consistent responses to human population density. These differences have led to marked spatial mismatches in losses: losses in phylogenetic diversity were in some areas almost 20 percentage points (pp.) more severe than losses in species diversity, but in other areas losses were almost 40 pp. less severe. Main conclusions: These results highlight the importance of exploring multiple measures of diversity when prioritizing and evaluating conservation actions, as species-diverse assemblages may be phylogenetically and functionally impoverished, potentially threatening pollination service provision.
RESUMO
Protected areas are widely considered essential for biodiversity conservation. However, few global studies have demonstrated that protection benefits a broad range of species. Here, using a new global biodiversity database with unprecedented geographic and taxonomic coverage, we compare four biodiversity measures at sites sampled in multiple land uses inside and outside protected areas. Globally, species richness is 10.6% higher and abundance 14.5% higher in samples taken inside protected areas compared with samples taken outside, but neither rarefaction-based richness nor endemicity differ significantly. Importantly, we show that the positive effects of protection are mostly attributable to differences in land use between protected and unprotected sites. Nonetheless, even within some human-dominated land uses, species richness and abundance are higher in protected sites. Our results reinforce the global importance of protected areas but suggest that protection does not consistently benefit species with small ranges or increase the variety of ecological niches.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , AnimaisRESUMO
Land-use change is one of the biggest threats to biodiversity globally. The effects of land use on biodiversity manifest primarily at local scales which are not captured by the coarse spatial grain of current global land-use mapping. Assessments of land-use impacts on biodiversity across large spatial extents require data at a similar spatial grain to the ecological processes they are assessing. Here, we develop a method for statistically downscaling mapped land-use data that combines generalized additive modeling and constrained optimization. This method was applied to the 0.5° Land-use Harmonization data for the year 2005 to produce global 30â³ (approx. 1 km(2)) estimates of five land-use classes: primary habitat, secondary habitat, cropland, pasture, and urban. The original dataset was partitioned into 61 bio-realms (unique combinations of biome and biogeographical realm) and downscaled using relationships with fine-grained climate, land cover, landform, and anthropogenic influence layers. The downscaled land-use data were validated using the PREDICTS database and the geoWiki global cropland dataset. Application of the new method to all 61 bio-realms produced global fine-grained layers from the 2005 time step of the Land-use Harmonization dataset. Coarse-scaled proportions of land use estimated from these data compared well with those estimated in the original datasets (mean R (2): 0.68 ± 0.19). Validation with the PREDICTS database showed the new downscaled land-use layers improved discrimination of all five classes at PREDICTS sites (P < 0.0001 in all cases). Additional validation of the downscaled cropping layer with the geoWiki layer showed an R (2) improvement of 0.12 compared with the Land-use Harmonization data. The downscaling method presented here produced the first global land-use dataset at a spatial grain relevant to ecological processes that drive changes in biodiversity over space and time. Integrating these data with biodiversity measures will enable the reporting of land-use impacts on biodiversity at a finer resolution than previously possible. Furthermore, the general method presented here could be useful to others wishing to downscale similarly constrained coarse-resolution data for other environmental variables.