Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203358

RESUMO

X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), a cellular stress response pathway involved in maintaining protein homeostasis in the endoplasmic reticulum (EnR). While the role of XBP1 in UPR is well-characterised, emerging evidence suggests its involvement in endocrine resistance in breast cancer. The transcriptional activity of spliced XBP1 (XBP1s) is a major component of its biological effects, but the targets of XBP1s in estrogen receptor (ER)-positive breast cancer are not well understood. Here, we show that the expression of miR-378 and PPARGC1B (host gene of miR-378) is downregulated during UPR. Using chemical and genetic methods, we show that XBP1s is necessary and sufficient for the downregulation of miR-378 and PPARGC1B. Our results show that overexpression of miR-378 significantly suppressed cell growth, colony formation, and migration of ER-positive breast cancer cells. Further, we found that expression of miR-378 sensitised the cells to UPR-induced cell death and anti-estrogens. The expression of miR-378 and PPARGC1B was downregulated in breast cancer, and higher expression of miR-378 is associated with better outcomes in ER-positive breast cancer. We found that miR-378 upregulates the expression of several genes that regulate type I interferon signalling. Analysis of separate cohorts of breast cancer patients showed that a gene signature derived from miR-378 upregulated genes showed a strong association with improved overall and recurrence-free survival in breast cancer. Our results suggest a growth-suppressive role for miR-378 in ER-positive breast cancer where downregulation of miR-378 by XBP1 contributes to endocrine resistance in ER-positive breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Proteína 1 de Ligação a X-Box/genética , Neoplasias da Mama/genética , Proliferação de Células/genética , Mama , MicroRNAs/genética , Proteínas de Ligação a RNA
2.
BMC Mol Cell Biol ; 25(1): 4, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336617

RESUMO

BACKGROUND: The lack of appropriate prognostic biomarkers remains a significant obstacle in the early detection of Head and Neck Squamous Cell Carcinoma (HNSCC), a cancer type with a high mortality rate. Despite considerable advancements in treatment, the success in diagnosing HNSCC at an early stage still needs to be improved. Nuclear factor erythroid 2-related factor 2 (Nrf2) and Sonic Hedgehog (Shh) are overexpressed in various cancers, including HNSCC, and have recently been proposed as possible therapeutic targets for HNSCC. Circulating Tumor Cell (CTC) is a novel concept used for the early detection of cancers, and studies have suggested that a higher CTC count is associated with the aggressiveness of HNSCC and poor survival rates. Therefore, we aimed to establish molecular markers for the early diagnosis of HNSCC considering Shh/Nrf2 overexpression in the background. In addition, the relation between Shh/Nrf2 and CTCs is still unexplored in HNSCC patients. METHODS: In the present study, we selected a cohort of 151 HNSCC patients and categorized them as CTC positive or negative based on the presence or absence of CTCs in their peripheral blood. Data on demographic and clinicopathological features with the survival of the patients were analyzed to select the patient cohort to study Shh/Nrf2 expression. Shh and Nrf2 expression was measured by qRT-PCR. RESULTS: Considering significant demographic [smoking, betel leaf (p-value < 0.0001)] and clinicopathological risk factors [RBC count (p < 0.05), Platelet count (p < 0.05), Neutrophil count (p < 0.005), MCV (p < 0.0001), NLR (p < 0.05), MLR (p < 0.05)], patients who tested positive for CTC also exhibited significant overexpression of Shh/Nrf2 in both blood and tissue compared to CTC-negative patients. A strong association exists between CTCs and tumor grade. Following chemotherapy (a combination of Cisplatin, 5FU, and Paclitaxel), the frequency of CTCs was significantly decreased in patients with HNSCC who had tested positive for CTCs. The Kaplan-Meier plot illustrated that a higher number of CTCs is associated with poorer overall survival (OS) in patients with HNSCC. CONCLUSIONS: Detecting CTCs, and higher expression of Shh and Nrf2 in HNSCC patients' blood, can be a promising tool for diagnosing and prognosticating HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Fator 2 Relacionado a NF-E2 , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Estudos Prospectivos , Proteínas Hedgehog , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética
3.
Exp Hematol ; 118: 53-64.e1, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36574579

RESUMO

The manifestation of coronavirus disease 2019 (COVID-19) severity and mortality has been associated with dysregulation of the immune response, often influenced by racial disparities and conferred by changes in hematologic and immunologic parameters. These biological and hematologic parameters as well as cytokine profiles were investigated in a cohort of 61 COVID-19-positive patients (categorized into mild, moderate, and severe groups) from Bangladesh using standard analytical methods. The data reported that the interleukin (IL)-4 and IL-6 levels were significantly increased, whereas the levels of interferon (IFN)-γ were significantly reduced in patients with severe COVID-19 (p < 0.05) compared with those in patients with mild and/or moderate COVID-19. The extent of erythrocyte sedimentation rate (ESR); neutrophil count; and levels of ferritin, C-reactive protein (CRP), and D-dimer (p < 0.05) were found to be significantly increased, whereas the white blood cell (WBC), lymphocyte, eosinophil, and platelet counts (p < 0.05) were observed to be significantly reduced in patients with severe COVID-19 compared with those in the patients in other 2 groups. Our study exhibited a significantly higher IL-6-to-lymphocyte ratio in patients with severe COVID-19 than in those with mild and moderate COVID-19. The calculated neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and ferritin-to-ESR ratio were significantly increased in patients with severe COVID-19. The increase in the IL-4 and IL-6 levels along with CRP and D-dimer levels may envisage a hyperinflammatory environment and immune dysregulation, which contribute to prolonged viral persistence, leading to severe disease. However, the reduced level of IFN-γ can be attributed to a less fatality toll in Bangladesh compared with that in the rest of the world.


Assuntos
COVID-19 , Humanos , Interleucina-6 , Linfócitos , Contagem de Leucócitos , Proteína C-Reativa/análise , Neutrófilos , Interferon gama , Estudos Retrospectivos
4.
Cancer Treat Res Commun ; 25: 100224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33096318

RESUMO

Recent evidence has shown that the miR-17-92 cluster can function either as oncogene or tumor suppressor in human cancers. The function of miR-17-92 in subtypes of breast cancer remains largely unknown. The expression of miR-17-92 is elevated in triple negative breast cancer (TNBC) but reduced in estrogen receptor (ER)-positive breast cancer (ERPBC). We show that increased expression of miRNAs belonging to the miR-17-92 cluster is associated with poor outcome in TNBC, whereas the expression of miR-17-92 miRNAs is with good outcome in ERPBC. We show that ectopic expression of miR-17-92 inhibited cell growth and invasion of ER-positive and HER2-enriched cells. On the contrary, miR-17-92 expression enhanced cell growth and invasion of TNBC cells. Further, we found that miR-17-92 expression sensitized MCF7 cells to chemotherapeutic compounds, whereas it rendered SKBR3 cells resistant to them. We found that expression of ADORA1 was reduced by miR-17-92-expressing breast cancer cells, specifically in ERPBC. We observed an inverse correlation between the expression of ADORA1 and miR-17-92 in human breast cancer. Treatment with DPCPX, a selective ADORA1 antagonist, abolished the difference in the growth of control and miR-17-92 overexpressing MCF7 cells and identified ADORA1 as a key functional target of miR-17-92 in ERPBC. Furthermore, increased expression of ADORA1 in ERPBC is associated with a poor outcome. Our observations underscore the context-dependent role of miR-17-92 in breast cancer subtypes and suggest that miR-17-92 could serve as novel prognostic markers in breast cancer.


Assuntos
RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Feminino , Humanos , Prognóstico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
5.
Oncotarget ; 9(14): 11707-11721, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29545931

RESUMO

Nuclear receptor coactivators (NCOAs) function as coactivators for nuclear receptors as well as several other transcription factors and potentiate their transcriptional activity. NCOAs play an important role in biology of hormone-dependent and -independent cancers. MCB-613 is a recently described, small molecule stimulator of NCOAs and anti-neoplastic compound that leads to the death of tumour cells due to increased cellular stress. In the present study we investigated the molecular mechanism of MCB-613-induced cell death. We report that absence of NCOA3 leads to compromised activation of PERK signalling pathway during unfolded protein response (UPR). We found that chemical and genetic inhibition of NCOA3 attenuated the expression of PERK at mRNA and protein level. We show that loss of NCOA3 renders cells hypersensitive to UPR induced cell death. Our results show that MCB-613 induced cell death is attenuated in NCOA3 knockout HeLa cells and MCB-613 leads to enhanced PERK signalling in wild-type HeLa cells. The knockdown of PERK provides resistance to MCB-613 mediated cell death while knockdown of XBP1 and ATF6 have no such effect. Our results suggest that hyperstimulation of NCOA3 by MCB-613 induces cell death by evoking constitutive PERK signalling. Taken together our results point to NCOA3 as an important determinant in regulating cell fate during ER stress, with too little and too much NCOA3 both producing deleterious effects.

6.
Sci Rep ; 5: 18304, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26674075

RESUMO

The endoplasmic reticulum (ER) responds to changes in intracellular homeostasis through activation of the unfolded protein response (UPR). UPR can facilitate the restoration of cellular homeostasis, via the concerted activation of three ER stress sensors, namely IRE1, PERK and ATF6. Global approaches in several cellular contexts have revealed that UPR regulates the expression of many miRNAs that play an important role in the regulation of life and death decisions during UPR. Here we show that expression of miR-424(322)-503 cluster is downregulated during UPR. IRE1 inhibitor (4 µ8C) and deficiency of XBP1 had no effect on downregulation of miR-424(322)-503 during UPR. Treatment of cells with CCT030312, a selective activator of EIF2AK3/PERK signalling, leads to the downregulation of miR-424(322)-503 expression. The repression of miR-424(322)-503 cluster during conditions of ER stress is compromised in PERK-deficient MEFs. miR-424 regulates the expression of ATF6 via a miR-424 binding site in its 3' UTR and attenuates the ATF6 transcriptional activity during UPR. Further miR-424 had no effect on IRE1-XBP1 axis but enhanced the regulated IRE1-dependent decay (RIDD). Our results suggest that miR-424 constitutes an obligatory fine-tuning mechanism where PERK-mediated downregulation of miR-424(322)-503 cluster regulates optimal activation of IRE1 and ATF6 during conditions of ER stress.


Assuntos
Fator 6 Ativador da Transcrição/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Estresse do Retículo Endoplasmático/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Camundongos Knockout , Família Multigênica , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA