Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 616
Filtrar
1.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
2.
J Infect Dis ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581432

RESUMO

BACKGROUND: With COVID-19 vaccination no longer mandated by many businesses/organizations, it is now up to individuals to decide whether to get any new boosters/updated vaccines going forward. METHODS: We developed a Markov model representing the potential clinical/economic outcomes from an individual perspective in the United States of getting versus not getting an annual COVID-19 vaccine. RESULTS: For an 18-49-year-old, getting vaccinated at its current price ($60) can save the individual on average $30-$603 if the individual is uninsured and $4-$437 if the individual has private insurance, as long as the starting vaccine efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is ≥50% and the weekly risk of getting infected is ≥0.2%, corresponding to an individual interacting with 9 other people in a day under Winter 2023-2024 Omicron SARS-CoV-2 variant conditions with an average infection prevalence of 10%. For a 50-64-year-old, these cost-savings increase to $111-$1,278 and $119-$1,706, for someone without and with insurance, respectively. The risk threshold increases to ≥0.4% (interacting with 19 people/day), when the individual has 13.4% pre-existing protection against infection (e.g., vaccinated 9 months earlier). CONCLUSION: There is both clinical and economic incentive for the individual to continue to get vaccinated against COVID-19 each year.

3.
Annu Rev Med ; 73: 55-64, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637324

RESUMO

The rapid development and deployment of mRNA and adenovirus-vectored vaccines against coronavirus disease 2019 (COVID-19) continue to astound the global scientific community, but these vaccine platforms and production approaches have still not achieved global COVID-19 vaccine equity. Immunizing the billions of people at risk for COVID-19 in the world's low- and middle-income countries (LMICs) still relies on the availability of vaccines produced and scaled through traditional technology approaches. Vaccines based on whole inactivated virus (WIV) and protein-based platforms, as well as protein particle-based vaccines, are the most produced by LMIC vaccine manufacturing strategies. Three major WIV vaccines are beginning to be distributed widely. Several protein-based and protein particle-based vaccines are advancing with promising results. Overall, these vaccines are exhibiting excellent safety profiles and in some instances have shown their potential to induce high levels of virus neutralizing antibodies and T cell responses (and protection) both in nonhuman primates and in early studies in humans. There is an urgent need to continue accelerating these vaccines for LMICs in time to fully vaccinate these populations by the end of 2022 at the latest. Achieving these goals would also serve as an important reminder that we must continue to maintain expertise in producing multiple vaccine technologies, rather than relying on any individual platform.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , SARS-CoV-2 , Vacinas de Produtos Inativados
4.
Mol Med ; 30(1): 37, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491420

RESUMO

My scientific life in translational medicine runs in two parallel, yet often converging paths. The first, is four-decade-long commitment to develop new vaccines for parasitic and neglected tropical diseases, as well as pandemic threats. This includes a vaccine for human hookworm infection that I began as an MD-PhD student in New York City in the 1980s, and a new low-cost COVID vaccine that reached almost 100 million people in low- and middle-income countries. Alongside this life in scientific research, is one in public engagement for vaccine and neglected disease diplomacy to ensure that people who live in extreme poverty can benefit from access to biomedical innovations. A troubling element has been the daunting task of countering rising antivaccine activism, which threatens to undermine our global vaccine ecosystem. Yet, this activity may turn out to become just as important for saving lives as developing new vaccines.


Assuntos
Vacinas contra COVID-19 , Infecções por Uncinaria , Criança , Humanos , Saúde da Criança , Saúde Global , Infecções por Uncinaria/prevenção & controle , Vacinas Sintéticas
5.
PLoS Biol ; 19(1): e3001068, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507935

RESUMO

The United States witnessed an unprecedented politicization of biomedical science starting in 2015 that has exploded into a complex, multimodal anti-science empire operating through mass media, political elections, legislation, and even health systems. Anti-science activities now pervade the daily lives of many Americans, and threaten to infect other parts of the world. We can attribute the deaths of tens of thousands of Americans from COVID-19, measles, and other vaccine-preventable diseases to anti-science. The acceleration of anti-science activities demands not only new responses and approaches but also international coordination. Vaccines and other biomedical advances will not be sufficient to halt COVID-19 or future potentially catastrophic illnesses, unless we simultaneously counter anti-science aggression.


Assuntos
Política , Pseudociência , Recusa de Vacinação/psicologia , Vacinação/psicologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Opinião Pública , SARS-CoV-2/isolamento & purificação , U.R.S.S. , Estados Unidos
6.
PLoS Biol ; 19(7): e3001369, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34319972

RESUMO

There is a troubling new expansion of antiscience aggression in the United States. It's arising from far-right extremism, including some elected members of the US Congress and conservative news outlets that target prominent biological scientists fighting the COVID-19 pandemic.


Assuntos
Agressão , COVID-19/prevenção & controle , Pesquisadores/estatística & dados numéricos , SARS-CoV-2/isolamento & purificação , Ciência/estatística & dados numéricos , Movimento contra Vacinação/estatística & dados numéricos , Atitude Frente a Saúde , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Pandemias/prevenção & controle , Política , SARS-CoV-2/fisiologia , Ciência/tendências , Mídias Sociais/estatística & dados numéricos , Estados Unidos/epidemiologia
7.
Protein Expr Purif ; 218: 106458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423156

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.


Assuntos
Proteínas de Membrana , Trypanosoma cruzi , Trypanosoma cruzi/genética , Cisteína Endopeptidases/metabolismo , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
8.
PLoS Biol ; 18(3): e3000683, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32218568

RESUMO

In the last half of the 2010s, we saw an upswing in antiscience movements and unprecedented attacks on scientists in the United States and elsewhere. All indications suggest that this trend will not slow or reverse anytime soon, and it is now increasingly apparent that it will fall to the scientists themselves to respond, engage a skeptical public, and lead the defense of science. Accordingly, we must recognize opportunities to both reorganize science doctoral and postdoctoral training and incentivize senior scientists as a means to establish a new ecosystem for science public engagement. Such activities may become essential if the assaults on our profession continue or expand. Today, the commitment of young scientists to public service is at an all-time high. However, we must work quickly to capture that enthusiasm and channel it into a social good, lest we lose this opportunity. Potentially, open-access publishers could play a central role.


Assuntos
Comunicação , Participação da Comunidade , Ciência/tendências , Movimento contra Vacinação/educação , Humanos , Publicação de Acesso Aberto/tendências , Pesquisadores/educação , Pesquisadores/tendências , Ciência/educação , Estados Unidos
9.
Perspect Biol Med ; 66(3): 420-436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38661936

RESUMO

Recent surges in antivaccine activism and other antiscience trends now converge with rising antisemitism. During the COVID-19 pandemic, authoritarian elements from the far right in North America and Europe often invoked Nazi imagery to describe vaccinations or at times even blame the Jewish people for COVID-19 origins and vaccine profiteering. Such tropes represent throwbacks to the 14th century, when European Jews were persecuted during the time of the bubonic plague. This article provides both historical and recent perspectives on the links between antiscience and antisemitism, together with the author's personal experience as a Jewish vaccine scientist targeted by both dark forces. New approaches to uncoupling antisemitism from antiscience, while combating both, are essential for saving lives and preserving democratic values.


Assuntos
COVID-19 , Judeus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19/administração & dosagem , Movimento contra Vacinação , Vacinação/história , Pandemias , Socialismo Nacional/história , História do Século XX
10.
Circulation ; 144(6): 471-484, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34281357

RESUMO

Myocarditis has been recognized as a rare complication of coronavirus disease 2019 (COVID-19) mRNA vaccinations, especially in young adult and adolescent males. According to the US Centers for Disease Control and Prevention, myocarditis/pericarditis rates are ≈12.6 cases per million doses of second-dose mRNA vaccine among individuals 12 to 39 years of age. In reported cases, patients with myocarditis invariably presented with chest pain, usually 2 to 3 days after a second dose of mRNA vaccination, and had elevated cardiac troponin levels. ECG was abnormal with ST elevations in most, and cardiac MRI was suggestive of myocarditis in all tested patients. There was no evidence of acute COVID-19 or other viral infections. In 1 case, a cardiomyopathy gene panel was negative, but autoantibody levels against certain self-antigens and frequency of natural killer cells were increased. Although the mechanisms for development of myocarditis are not clear, molecular mimicry between the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and self-antigens, trigger of preexisting dysregulated immune pathways in certain individuals, immune response to mRNA, and activation of immunologic pathways, and dysregulated cytokine expression have been proposed. The reasons for male predominance in myocarditis cases are unknown, but possible explanations relate to sex hormone differences in immune response and myocarditis, and also underdiagnosis of cardiac disease in women. Almost all patients had resolution of symptoms and signs and improvement in diagnostic markers and imaging with or without treatment. Despite rare cases of myocarditis, the benefit-risk assessment for COVID-19 vaccination shows a favorable balance for all age and sex groups; therefore, COVID-19 vaccination is recommended for everyone ≥12 years of age.


Assuntos
Autoantígenos/imunologia , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Miocardite/induzido quimicamente , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Biomarcadores , COVID-19/epidemiologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Feminino , Humanos , Masculino , Mimetismo Molecular/imunologia , Miocardite/imunologia , Fatores Sexuais
11.
Lancet ; 398(10317): 2186-2192, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793741

RESUMO

Since the first case of COVID-19 was identified in the USA in January, 2020, over 46 million people in the country have tested positive for SARS-CoV-2 infection. Several COVID-19 vaccines have received emergency use authorisations from the US Food and Drug Administration, with the Pfizer-BioNTech vaccine receiving full approval on Aug 23, 2021. When paired with masking, physical distancing, and ventilation, COVID-19 vaccines are the best intervention to sustainably control the pandemic. However, surveys have consistently found that a sizeable minority of US residents do not plan to get a COVID-19 vaccine. The most severe consequence of an inadequate uptake of COVID-19 vaccines has been sustained community transmission (including of the delta [B.1.617.2] variant, a surge of which began in July, 2021). Exacerbating the direct impact of the virus, a low uptake of COVID-19 vaccines will prolong the social and economic repercussions of the pandemic on families and communities, especially low-income and minority ethnic groups, into 2022, or even longer. The scale and challenges of the COVID-19 vaccination campaign are unprecedented. Therefore, through a series of recommendations, we present a coordinated, evidence-based education, communication, and behavioural intervention strategy that is likely to improve the success of COVID-19 vaccine programmes across the USA.


Assuntos
Terapia Comportamental , Vacinas contra COVID-19 , COVID-19/transmissão , Comunicação , Programas de Imunização , SARS-CoV-2 , Humanos , Política , Estados Unidos , Recusa de Vacinação/psicologia
12.
Protein Expr Purif ; 190: 106003, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34688919

RESUMO

SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± 3.0 mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± 3% (total yield of purified protein: 270.5 ± 13.2 mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 protein-based vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.


Assuntos
Vacinas contra COVID-19 , Expressão Gênica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/farmacologia , Humanos , Camundongos , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , SARS-CoV-2/química , SARS-CoV-2/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/farmacologia
14.
J Infect Dis ; 224(6): 938-948, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-33954775

RESUMO

BACKGROUND: With multiple coronavirus disease 2019 (COVID-19) vaccines available, understanding the epidemiologic, clinical, and economic value of increasing coverage levels and expediting vaccination is important. METHODS: We developed a computational model (transmission and age-stratified clinical and economics outcome model) representing the United States population, COVID-19 coronavirus spread (February 2020-December 2022), and vaccination to determine the impact of increasing coverage and expediting time to achieve coverage. RESULTS: When achieving a given vaccination coverage in 270 days (70% vaccine efficacy), every 1% increase in coverage can avert an average of 876 800 (217 000-2 398 000) cases, varying with the number of people already vaccinated. For example, each 1% increase between 40% and 50% coverage can prevent 1.5 million cases, 56 240 hospitalizations, and 6660 deaths; gain 77 590 quality-adjusted life-years (QALYs); and save $602.8 million in direct medical costs and $1.3 billion in productivity losses. Expediting to 180 days could save an additional 5.8 million cases, 215 790 hospitalizations, 26 370 deaths, 206 520 QALYs, $3.5 billion in direct medical costs, and $4.3 billion in productivity losses. CONCLUSIONS: Our study quantifies the potential value of decreasing vaccine hesitancy and increasing vaccination coverage and how this value may decrease with the time it takes to achieve coverage, emphasizing the need to reach high coverage levels as soon as possible, especially before the fall/winter.


Assuntos
Vacinas contra COVID-19/economia , Análise Custo-Benefício , Vacinação/economia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Humanos , Modelos Econômicos , SARS-CoV-2 , Estados Unidos , Vacinação/estatística & dados numéricos
17.
PLoS Biol ; 16(10): e3000024, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30289876

RESUMO

That a scientist might shape and cultivate a personal brand is a relatively new concept but one that is finding increasing acceptance in this new age of rapid communications and social media. A key driver is the abrupt rise in well-funded and organized antiscience movements, especially in North America and Europe, such that society now benefits from scientists with strong personal brands and public personas who are willing to engage general audiences. In this sense, branding itself can advance science, the sharing of information, and the promotion of science as a public good. Still another dimension to branding is that it affords an opportunity to mentor younger scientists and helps you to become an important role model for the next generation. There is also a practical side, as today, fewer scientists spend their entire career at a single institution, so owning a strong brand can sometimes create easier paths for transitions and mobility. However, brand cultivation ideally begins in collaboration with your institutional office of communications and is done in a way that is seen as a win for both you and your university or research institution. Described here are some steps to consider when embarking on brand cultivation and how to avoid some of the potential pitfalls.


Assuntos
Ciência , Mídias Sociais , Comunicação , Europa (Continente) , Humanos , América do Norte , Autonomia Pessoal , Papel (figurativo)
18.
PLoS Biol ; 16(9): e3000010, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30226835

RESUMO

The United States is the only major nation to not yet have ratified the United Nations Convention on the Rights of the Child (UNCRC). Recently, there has been an erosion of the rights of children across America, Europe, and elsewhere, but through science, we may have an opportunity to counter some of this alarming trend. In the area of vaccines, the scientific community can raise its voice on the dangers that nonmedical exemptions and delays pose to children at risk for measles, influenza, and other childhood illnesses. Poverty places infants and children at high risk for illness and homelessness. Gun violence and gun-related accidents are killing on average four American children daily, and climate change is promoting global pediatric malnutrition. Increasing international, federal, and state support to seek innovative solutions to these and related issues is a moral imperative.


Assuntos
Direitos Humanos , Ciência , Criança , Mudança Climática , Emigração e Imigração , Geografia , Violência com Arma de Fogo , Humanos , Doenças Negligenciadas/epidemiologia , Pobreza , Nações Unidas , Vacinas/imunologia
19.
Protein Expr Purif ; 177: 105750, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920041

RESUMO

Cutaneous leishmaniasis is a parasitic and neglected tropical disease transmitted by the bites of sandflies. The emergence of cutaneous leishmaniasis in areas of war, conflict, political instability, and climate change has prompted efforts to develop a preventive vaccine. One vaccine candidate antigen is PpSP15, a 15 kDa salivary antigen from the sandfly Phlebotomus papatasi that facilitates the infection of the Leishmania parasite and has been shown to induce parasite-specific cell-mediated immunity. Previously, we developed a fermentation process for producing recombinant PpSP15 in Pichia pastoris and a two-chromatographic-step purification process at 100 mL scale. Here we expand the process design to the 10 L scale and examine its reproducibility by performing three identical process runs, an essential transition step towards technology transfer for pilot manufacture. The process was able to reproducibly recover 81% of PpSP15 recombinant protein with a yield of 0.75 g/L of fermentation supernatant, a purity level of 97% and with low variance among runs. Additionally, a freeze-thaw stability study indicated that the PpSP15 recombinant protein remains stable after undergoing three freeze-thaw cycles, and an accelerated stability study confirmed its stability at 37 °C for at least one month. A research cell bank for the expression of PpSP15 was generated and fully characterized. Collectively, the cell bank and the production process are ready for technology transfer for future cGMP pilot manufacturing.


Assuntos
Proteínas de Insetos/imunologia , Leishmania/imunologia , Vacinas contra Leishmaniose/imunologia , Phlebotomus/química , Proteínas e Peptídeos Salivares/imunologia , Animais , Clonagem Molecular , Feminino , Fermentação , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Leishmania/química , Vacinas contra Leishmaniose/genética , Vacinas contra Leishmaniose/metabolismo , Leishmaniose Cutânea/prevenção & controle , Peso Molecular , Phlebotomus/fisiologia , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
20.
Parasitology ; : 1-12, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33757603

RESUMO

Trichuriasis known as whipworm infection caused by Trichuris trichiura, is a highly prevalent soil-transmitted helminthiasis in low- and middle-income countries located in tropical and subtropical areas and affecting approximately 360 million people. Children typically harbour the largest burden of T. trichiura and they are usually co-infected with other soil-transmitted helminth (STH), including Ascaris lumbricoides and hookworm. The consequences of trichuriasis, such as malnutrition and physical and cognitive growth restriction, lead to a massive health burden in endemic regions. Despite the implementation of mass drug administration of anthelminthic treatment to school-age children, T. trichiura infection remains challenging to control due to the low efficacy of current drugs as well as high rates of post-treatment re-infection. Thus, the development of a vaccine that would induce protective immunity and reduce infection rate or community faecal egg output is essential. Hurdles for human whipworm vaccine development include the lack of suitable vaccine antigen targets and animal models for human T. trichiura infection. Instead, rodent whipworm T. muris infected mouse models serve as a major surrogate for testing immunogenicity and efficacy of vaccine candidates. In this review, we summarize recent advances in animal models for T. trichiura antigen discovery and testing of vaccine candidates, while providing an overall view of the current status of T. trichiura vaccine development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA