RESUMO
BACKGROUND: Paroxysmal kinesigenic dyskinesia (PKD) is the most common type of paroxysmal dyskinesias. Only one-third of PKD patients are attributed to proline-rich transmembrane protein 2 (PRRT2) mutations. OBJECTIVE: We aimed to explore the potential causative gene for PKD. METHODS: A cohort of 196 PRRT2-negative PKD probands were enrolled for whole-exome sequencing (WES). Gene Ranking, Identification and Prediction Tool, a method of case-control analysis, was applied to identify the candidate genes. Another 325 PRRT2-negative PKD probands were subsequently screened with Sanger sequencing. RESULTS: Transmembrane Protein 151 (TMEM151A) variants were mainly clustered in PKD patients compared with the control groups. 24 heterozygous variants were detected in 25 of 521 probands (frequency = 4.80%), including 18 missense and 6 nonsense mutations. In 29 patients with TMEM151A variants, the ratio of male to female was 2.63:1 and the mean age of onset was 12.93 ± 3.15 years. Compared with PRRT2 mutation carriers, TMEM151A-related PKD were more common in sporadic PKD patients with pure phenotype. There was no significant difference in types of attack and treatment outcome between TMEM151A-positive and PRRT2-positive groups. CONCLUSIONS: We consolidated mutations in TMEM151A causing PKD with the aid of case-control analysis of a large-scale WES data, which broadens the genotypic spectrum of PKD. TMEM151A-related PKD were more common in sporadic cases and tended to present as pure phenotype with a late onset. Extensive functional studies are needed to enhance our understanding of the pathogenesis of TMEM151A-related PKD. © 2021 International Parkinson and Movement Disorder Society.
Assuntos
Coreia , Distonia , Proteínas de Membrana , Adolescente , Criança , Feminino , Humanos , Masculino , Coreia/genética , Distonia/genética , Proteínas de Membrana/metabolismo , Mutação/genética , FenótipoRESUMO
To investigate the effect of 1800 MHz electromagnetic radiation (EMR) on apoptosis, we exposed NIH/3T3 cells at 1800 MHz with a specific absorption rate (SAR) of 2 W/kg intermittently for 12, 24, 36, and 48 h. After exposure, Cell Counting Kit-8 (CCK-8) and flow cytometry were used to detect cell viability and apoptosis; the expression of p53, a molecule with the key role in apoptosis, was measured by real-time qPCR, western blot, and immunofluorescence; and images of the structure of the mitochondria, directly reflecting apoptosis, were captured by electron microscopy. The results showed that the viability of cells in the 12, 36, and 48 h exposure groups significantly decreased compared with the sham groups; after 48 h of exposure, the percentage of late apoptotic cells in the exposure group was significantly higher. Real-time qPCR results showed that p53 mRNA in the 48 h exposure group was 1.4-fold of that in the sham group; significant differences of p53 protein fluorescence expression were observed between the exposure groups and the sham groups after 24 h and 48 h. The mitochondrial swelling and vesicular morphology were found in the electron microscopy images after 48 h exposure. These findings demonstrated 1800 MHz, SAR 2 W/kg EMR for 48 h may cause apoptosis in NIH/3T3 cells and that this apoptosis might be attributed to mitochondrial damage and upregulation of p53 expression.