Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(4): e1011083, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104532

RESUMO

As infected and vaccinated population increases, some countries decided not to impose non-pharmaceutical intervention measures anymore and to coexist with COVID-19. However, we do not have a comprehensive understanding of its consequence, especially for China where most population has not been infected and most Omicron transmissions are silent. This paper aims to reveal the complete silent transmission dynamics of COVID-19 by agent-based simulations overlaying a big data of more than 0.7 million real individual mobility tracks without any intervention measures throughout a week in a Chinese city, with an extent of completeness and realism not attained in existing studies. Together with the empirically inferred transmission rate of COVID-19, we find surprisingly that with only 70 citizens to be infected initially, 0.33 million becomes infected silently at last. We also reveal a characteristic daily periodic pattern of the transmission dynamics, with peaks in mornings and afternoons. In addition, by inferring individual professions, visited locations and age group, we found that retailing, catering and hotel staff are more likely to get infected than other professions, and elderly and retirees are more likely to get infected at home than outside home.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Big Data , Ocupações , China/epidemiologia
2.
Appl Microbiol Biotechnol ; 108(1): 215, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363367

RESUMO

The metabolite urolithin A, a metabolite of the dietary polyphenol ellagic acid (EA), has significant health benefits for humans. However, studies on the gut microbiota involved in ellagic acid metabolism are limited. In this study, we conducted in vitro fermentation of EA using human intestinal microbiome combined with antibiotics (vancomycin, polymyxin B sulfate, and amphotericin B). Liquid chromatography-mass spectrometry (LC-MS/MS) analysis demonstrated that the production capacity of urolithin A by gut microbiota co-treated with polymyxin B sulfate and amphotericin B (22.39 µM) was similar to that of untreated gut microbiota (24.26 µM). Macrogenomics (high-throughput sequencing) was used to analyze the composition and structure of the gut microbiota. The results showed that the abundance of Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum in the gut microbiota without antibiotic treatment or co-treated with polymyxin B sulfate and amphotericin B during EA fermentation was higher than that in other antibiotic treatment gut microbiota. Therefore, B. longum, B. adolescentis, and B. bifidum may be new genera involved in the conversion of EA to urolithin A. In conclusion, the study revealed unique interactions between polyphenols and gut microbiota, deepening our understanding of the relationship between phenolic compounds like EA and the gut microbiota. These findings may contribute to the development of gut bacteria as potential probiotics for further development. KEY POINTS: • Intestinal microbiome involved in ellagic acid metabolism. • Gram-positive bacteria in the intestinal microbiome are crucial for ellagic acid metabolism. • Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum participate in ellagic acid metabolism.


Assuntos
Bifidobacterium longum , Cumarínicos , Microbioma Gastrointestinal , Humanos , Ácido Elágico/metabolismo , Cromatografia Líquida , Polimixina B , Anfotericina B , Espectrometria de Massas em Tandem , Bifidobacterium longum/metabolismo , Antibacterianos
3.
Genomics ; 115(6): 110724, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820823

RESUMO

Streptococcus thermophilus FUA329, a urolithin A-producing bacterium, is isolated from human breast milk. The complete genome sequence of FUA329 did not contain any plasmids and at least 20 proteins were related to extreme environment resistance. Phenotypic assay results demonstrated that FUA329 was susceptible to 12 kinds of antibiotics and did not exhibit any hemolytic or nitrate reductase activity. Three free radical scavenging assays revealed that FUA329 have high antioxidant capability. FUA329 exhibited a cell surface hydrophobicity of 52.58 ± 1.17% and an auto-aggregation rate of 18.69 ± 2.48%. Moreover, FUA329 demonstrated a survival rate of over 60% in strong acid and bile salt environments, indicating that FUA329 may be stable colonization in the gastrointestinal tract. Additionally, we firstly found 3 potential proteins and 11 potential genes of transforming ellagic acid to urolithins in FUA329 genome. The above results indicate that FUA329 has credible safety and probiotic properties, as well as the potential to be developed as a new generation of urolithin A-producing probiotics.


Assuntos
Leite Humano , Probióticos , Feminino , Humanos , Animais , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Leite/microbiologia , Genômica , Probióticos/metabolismo
4.
Biotechnol Appl Biochem ; 70(1): 281-289, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35578780

RESUMO

Developing chitinase suitable for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its benefits in environmental protection. In this study, chitinase from Aeromonas media CZW001 (AmChi) was purified and characterized. The molecular weight of AmChi was approximately 40 kDa. AmChi exhibited maximum catalytic activity at pH 8.0 with an optimum temperature of 55°C and showed broad stability between 15 and 65°C and between pH 5.0 and 9.0. AmChi was activated by Mg2+ , Na+ , and K+ and inhibited by Hg+ , Co2+ , Fe2+ , Ca2+ , Ag+ , Zn2+ , and EDTA. The main products of AmChi on colloidal chitin were chitinhexaose and chitinpentaose. AmChi had better substrate specificity for powdered chitin than colloidal chitin and had a higher catalytic efficiency toward (GlcNAc)5 than colloidal chitin. AmChi inhibited fungal growth in a dose-dependent manner. These results suggest that AmChi could be used for the enzymatic degradation of chitin to produce chitinhexaose and chitinpentaose, which have several industrial applications.


Assuntos
Quitinases , Quitinases/química , Temperatura , Quitina/química , Quitina/metabolismo , Especificidade por Substrato , Concentração de Íons de Hidrogênio
5.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232557

RESUMO

Myrosinase can hydrolyze glucosinolates to generate isothiocyanates, which have cancer prevention and anti-cancer properties. The main sources of myrosinase are cruciferous plants. To further improve the efficiency of isothiocyanates preparation, it is necessary to explore novel sources of myrosinases. In this study, we described a bacterium, Shewanella baltica Myr-37, isolated from marine mud, capable of producing a novel myrosinase (Smyr37) with a molecular weight of 100 kDa. The crude enzyme of Smyr37 showed the highest activity at 50 °C and pH 8.0. The sinigrin- and glucoraphanin-hydrolyzing activities of Smyr37 were 6.95 and 5.87 U/mg, respectively. Moreover, when the reaction temperature was 40 °C and pH was 7.0, the crude enzyme of Smyr37 could efficiently degrade glucoraphanin into sulforaphane within 25 min with a yield of 0.57 mg/mL. The corresponding conversion efficiency of sulforaphane from glucoraphanin was 89%. In summary, S. baltica Myr-37 myrosinase Smyr37, a novel myrosinase, can be used in the preparation of isothiocyanates.


Assuntos
Brassica , Shewanella , Brassica/metabolismo , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Isotiocianatos/metabolismo , Oximas , Shewanella/metabolismo , Sulfóxidos
6.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014581

RESUMO

Chitosan is a functional ingredient that is widely used in food chemistry as an emulsifier, flocculant, antioxidant, or preservative. Chitin deacetylases (CDAs) can catalyze the hydrolysis of acetyl groups, making them useful in the clean production of chitosan. However, the high inactivity of crystalline chitin catalyzed by CDAs has been regarded as the technical bottleneck of crystalline chitin deacetylation. Here, we mined the AsCDA gene from the genome of Acinetobacter schindleri MCDA01 and identified a member of the uraD_N-term-dom superfamily, which was a novel chitin deacetylase with the highest deacetylation activity. The AsCDA gene was expressed in Escherichia coli BL21 by IPTG induction, whose activity to colloidal chitin, α-chitin, and ß-chitin reached 478.96 U/mg, 397.07 U/mg, and 133.27 U/mg, respectively. In 12 h, the enzymatic hydrolysis of AsCDA removed 63.05% of the acetyl groups from α-chitin to prepare industrial chitosan with a degree of deacetylation higher than 85%. AsCDA, as a potent chitin decomposer in the production of chitosan, plays a positive role in the upgrading of the chitosan industry and the value-added utilization of chitin biological resources.


Assuntos
Quitina , Quitosana , Acinetobacter , Amidoidrolases/química , Amidoidrolases/genética , Quitina/química , Quitosana/química , Escherichia coli/genética
7.
PLoS Pathog ; 14(10): e1007347, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30286203

RESUMO

The vegetative insecticidal proteins (Vip), secreted by many Bacillus thuringiensis strains during their vegetative growth stage, are genetically distinct from known insecticidal crystal proteins (ICPs) and represent the second-generation insecticidal toxins. Compared with ICPs, the insecticidal mechanisms of Vip toxins are poorly understood. In particular, there has been no report of a definite receptor of Vip toxins to date. In the present study, we identified the scavenger receptor class C like protein (Sf-SR-C) from the Spodoptera frugiperda (Sf9) cells membrane proteins that bind to the biotin labeled Vip3Aa, via the affinity magnetic bead method coupled with HPLC-MS/MS. We then certified Vip3Aa protoxin could interact with Sf-SR-C in vitro and ex vivo. In addition, downregulation of SR-C expression in Sf9 cells and Spodoptera exigua larvae midgut reduced the toxicity of Vip3Aa to them. Coincidently, heterologous expression of Sf-SR-C in transgenic Drosophila midgut significantly enhanced the virulence of Vip3Aa to the Drosophila larvae. Moreover, the complement control protein domain and MAM domain of Sf-SR-C are involved in the interaction with Vip3Aa protoxin. Furthermore, endocytosis of Vip3Aa mediated by Sf-SR-C correlates with its insecticidal activity. Our results confirmed for the first time that Sf-SR-C acts as a receptor for Vip3Aa protoxin and provides an insight into the mode of action of Vip3Aa that will significantly facilitate the study of its insecticidal mechanism and application.


Assuntos
Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/microbiologia , Endocitose , Controle Biológico de Vetores , Receptores Depuradores Classe C/metabolismo , Spodoptera/microbiologia , Animais , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Depuradores Classe C/genética , Spodoptera/crescimento & desenvolvimento , Spodoptera/metabolismo , Virulência
9.
J Ind Microbiol Biotechnol ; 41(12): 1823-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25306884

RESUMO

As the most important group in the flavor profiles of Chinese liquor, ester aroma chemicals are responsible for the highly desired fruity odors. Alcohol acetyltransferase (AATase), which is mainly encoded by ATF1, is one of the most important enzymes for acetate ester synthesis in Saccharomyces cerevisiae. In this study, we overexpressed ATF1 in Chinese liquor yeast through precise and seamless insertion of PGK1 promoter (PGK1p) via a novel fusion PCR-mediated strategy. After two-step integration, PGK1p was embedded in the 5'-terminal of ATF1 exactly without introduction of any extraneous DNA sequence. In the liquid fermentation of corn hydrolysate, both mRNA level and AATase activity of ATF1 in mutant were pronounced higher than the parental strain. Meanwhile, productivity of ethyl acetate increased from 25.04 to 78.76 mg/l. The self-cloning strain without any heterologous sequences residual in its genome would contribute to further commercialization of favorable organoleptic characteristics in Chinese liquor.


Assuntos
Acetatos/metabolismo , Acetiltransferases/genética , Bebidas Alcoólicas , Proteínas/genética , Acetiltransferases/metabolismo , Ésteres , Fermentação , Aromatizantes/metabolismo , Regiões Promotoras Genéticas , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Anal Cell Pathol (Amst) ; 2024: 8889306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204800

RESUMO

Objective: To investigate the clinical and pathological effects of serum C3 level, mesangial C3 deposition intensity and blood lipid on IgA nephropathy. Methods: According to the deposition intensity of immunofluorescence (IF) complement C3 in mesangial region, a total of 151 patients were divided into: (1) negative group (65 cases), (2) weak positive group (51 cases), and (3) strong positive group (35 cases). According to the level of serum C3, the patients were divided into two groups: (1) 33 patients with decreased serum C3 (<85 mg/dL); (2) 118 patients with normal serum C3. The clinicopathological data of the patients were analyzed retrospectively according to the groups. Results: (1) With the increase of C3 deposition in mesangial region, the mean value of serum C3 level decreased, and the difference was statistically significant (P=0.001). (2) Compared with the normal serum C3 group, the blood urea nitrogen (BUN), serum creatinine (Scr), and albumin (Alb) in the serum C3 decreased group were higher, and the differences were statistically significant (P < 0.05), while the fasting blood glucose (FBG), low-density lipoprotein (LDL), triglyceride and 24-hr urinary protein (24hUTP) were lower, which difference was statistically significant (P < 0.05). (3) Compared with negative group and weak positive group, BUN, uric acid (UA), and Scr were higher in the strong positive group with C3 deposition, while eGFR was lower, with statistical significance (P < 0.05). However, C3 deposition in the mesangial region was related to T and enhanced mesangial C3 deposition was associated with more severe tubular atrophy and/or interstitial fibrosis, with statistically significant differences (P=0.001). Conclusion: Patients with strong mesangial C3 deposition and elevated lipid levels had more severe tubule atrophy and/or interstitial fibrosis, as well as more severe pathological lesions, suggesting that activation of the complement system is involved in the pathogenesis of IgA nephropathy and increases the metabolic burden of the kidney.


Assuntos
Glomerulonefrite por IGA , Humanos , Complemento C3 , Estudos Retrospectivos , Atrofia , Lipoproteínas LDL , Fibrose
11.
J Agric Food Chem ; 72(6): 3008-3016, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301119

RESUMO

Streptococcus thermophilus FUA329 converts ellagic acid (EA) to urolithin A (Uro-A), which is not autonomously converted by the gut microbiota to produce highly bioavailable and multibiologically active Uro-A in urolithin metabotype 0 (UM-0) populations. We consider that Streptococcus thermophilus FUA329 has the potential to be developed as a probiotic. Therefore, we utilized S. thermophilus FUA329 for in vitro cofermentation with gut microbiota. The results revealed that strain FUA329 increased the production of EA-converted Uro-A during in vitro cofermentation with the human gut microbiota of different urolithin metabotypes (UMs), with a significant increase in the production of Uro-A in the experimental group of UM-0. In addition, changes in the in vitro cofermentation microbial community were determined using high-throughput sequencing. Strain FUA329 modulated the structure and composition of the gut microbiota in different UMs, thereby significantly increasing the abundance of beneficial microbiota in the gut microbiota while decreasing the abundance of harmful microbiota. Of greatest interest was the significant increase in the abundance of Actinobacteria phylum after the cofermentation of strain FUA329 with UM-0 gut microbiota, which might be related to the significant increase in the production of Uro-A.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Streptococcus thermophilus , Cumarínicos/química , Ácido Elágico
12.
J Food Sci ; 89(4): 1976-1987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454630

RESUMO

Seafood is highly perishable and has a short shelf-life. This study investigated the effect of chitosan and alginate (CH-SA) coating combined with the cell-free supernatant of Streptococcus thermophilus FUA329 (CFS) as a preservative on the quailty of white shrimp (Litopenaeus vannamei) refrigerated at 4° for 0, 3, 6, 9, 12, 15 days. Freshly shrimps were randomly divided into four groups: the CFS group (400 mL); the CH-SA group (1% chitosan/1% alginate); the CFS-CH-SA group (1% chitosan/1% alginate with 400 mL CFS) are treatment groups, and the control group (400 mL sterile water). The CFS-CH-SA coating effectively suppressed microbial growth total viable count and chemical accumulation (pH, total volatile basic nitrogen, thiobarbituric acid reactive substance) compared with the control. Additionally, the CFS-CH-SA coating improved the texture and sensory characteristics of shrimp during storage. The coated shrimp exhibited significantly reduced water loss (p < 0.05). The combination of CH-SA coating with CFS treatment can extend the shelf life of shrimp. PRACTICAL APPLICATION: Recently, edible films have received more consideration as a promising method to enhance the shelf life of seafood. The presence of Lactic acid bacteria metabolites in edible films reduces spoilage and improves consumer health. Our findings encourage the application of edible coating incorporated with cell-free supernatant of Streptococcus thermophilus FUA 329 to design multifubctional foods and preserve the qualities of shrimp.


Assuntos
Quitosana , Conservação de Alimentos , Conservação de Alimentos/métodos , Alginatos , Quitosana/farmacologia , Quitosana/química , Streptococcus thermophilus , Expectativa de Vida , Água
13.
Toxins (Basel) ; 16(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251240

RESUMO

Vip3Aa, secreted by Bacillus thuringiensis, is effective at controlling major agricultural pests such as Spodoptera frugiperda. However, to control Vip3Aa resistance evolved in the field by different lepidoptera species, an in-depth study of sequence--structure--activity relationships is necessary to design new Vip3Aa variants. In this study, the four specific loops (ß4-ß5 loop, ß9-ß10 loop, ß12-ß13 loop, and ß14-ß15 loop) in domain III were selected and four loop mutants were constructed by replacing all residues in each specific loop with alanine. We obtained soluble proteins for three of the loop mutants, excluding the ß9-ß10 loop. These loop mutants have been characterized by toxicity bioassays against S. frugiperda, proteolytic processing, and receptor binding. These results indicate that the ß4-ß5 loop and ß14-ß15 loop are involved in receptor binding and Vip3Aa toxicity. Based on this, we constructed numerous mutants and obtained three single mutants (Vip3Aa-S366T, Vip3Aa-S366L, and Vip3Aa-R501A) that exhibited significantly increased toxicity of 2.61-fold, 3.39-fold, and 2.51-fold, respectively. Compared to Vip3Aa, the receptor affinity of Vip3Aa-S366T and Vip3Aa-S366L was significantly enhanced. Furthermore, we also analyzed and aligned the three-dimensional structures of the mutants and Vip3Aa. In summary, these results indicate that the loops in domain III have the potential to be targeted to enhance the insecticidal toxicity of the Vip3Aa protein.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/genética , Agricultura , Alanina , Bioensaio , Spodoptera
14.
Foods ; 12(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36900537

RESUMO

Enterococcus faecium FUA027 transforms ellagic acid (EA) to urolithin A (UA), which makes it a potential application in the preparation of UA by industrial fermentation. Here, the genetic and probiotic characteristics of E. faecium FUA027 were evaluated through whole-genome sequence analysis and phenotypic assays. The chromosome size of this strain was 2,718,096 bp, with a GC content of 38.27%. The whole-genome analysis revealed that the genome contained 18 antibiotic resistance genes and seven putative virulence factor genes. E. faecium FUA027 does not contain plasmids and mobile genetic elements (MGEs), and so the transmissibility of antibiotic resistance genes or putative virulence factors should not occur. Phenotypic testing further indicated that E. faecium FUA027 is sensitive to clinically relevant antibiotics. In addition, this bacterium exhibited no hemolytic activity, no biogenic amine production, and could significantly inhibit the growth of the quality control strain. In vitro viability was >60% in all simulated gastrointestinal environments, with good antioxidant activity. The study results suggest that E. faecium FUA027 has the potential to be used in industrial fermentation for the production of urolithin A.

15.
Carbohydr Polym ; 318: 121123, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479438

RESUMO

Chitin deacetylase (CDA) catalyzing the deacetylation of crystal chitin is a crucial step in the biosynthesis of chitosan, and also a scientific problem to be solved, which restricts the high-value utilization of chitin resources. This study aims to improve the catalytic efficiency of AsCDA from Acinetobacter schindleri MCDA01 by a semi-rational design using alanine scanning mutagenesis and saturation mutagenesis. The quadruple mutant M11 displayed a 2.31 and 1.73-fold improvement in kcat/Km and specific activity over AsCDA, which can remove 68 % of the acetyl groups from α-chitin. Furthermore, structural analysis suggested that additional hydrogen bonds, contributing the flexibility of amino acids and increasing the negative charge in M11 increased the catalytic efficiency. The microstructure changes of α-chitin pretreated by the mutant M11 were observed and evaluated using 13C CP/MAS NMR spectroscopy, FT-IR spectroscopy, XRD and SEM, and the results showed that M11 more efficiently catalyzed the release of acetyl groups from α-chitin. This study would provide a theoretical basis for the molecular modification of CDAs and accelerate the process of industrial production of chitosan by CDAs.


Assuntos
Quitina , Quitosana , Espectroscopia de Infravermelho com Transformada de Fourier , Catálise
16.
Foods ; 12(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37761058

RESUMO

Chitooligosaccharides (COS), a high-value chitosan derivative, have many applications in food, pharmaceuticals, cosmetics and agriculture owing to their unique biological activities. Chitosanase, which catalyzes the hydrolysis of chitosan, can cleave ß-1,4 linkages to produce COS. In this study, a chitosanase-producing Bacillus paramycoides BP-N07 was isolated from marine mud samples. The chitosanase enzyme (BpCSN) activity was 2648.66 ± 20.45 U/mL at 52 h and was able to effectively degrade chitosan. The molecular weight of purified BpCSN was approximately 37 kDa. The yield and enzyme activity of BpCSN were 0.41 mg/mL and 8133.17 ± 47.83 U/mg, respectively. The optimum temperature and pH of BpCSN were 50 °C and 6.0, respectively. The results of the high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) of chitosan treated with BpCSN for 3 h showed that it is an endo-chitosanase, and the main degradation products were chitobiose, chitotriose and chitotetraose. BpCSN was used for the preparation of oligosaccharides: 1.0 mg enzyme converted 10.0 g chitosan with 2% acetic acid into oligosaccharides in 3 h at 50 °C. In summary, this paper reports that BpCSN has wide adaptability to temperature and pH and high activity for hydrolyzing chitosan substrates. Thus, BpCSN is a chitosan decomposer that can be used for producing chitooligosaccharides industrially.

17.
Foods ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002131

RESUMO

Edible insects are a highly nutritious source of protein and are enjoyed by people all over the world. Insects contain various other nutrients and beneficial compounds, such as lipids, vitamins and minerals, chitin, phenolic compounds, and antimicrobial peptides, which contribute to good health. The practice of insect farming is far more resource-efficient compared to traditional agriculture and animal husbandry, requiring less land, energy, and water, and resulting in a significantly lower carbon footprint. In fact, insects are 12 to 25 times more efficient than animals in converting low-protein feed into protein. When it comes to protein production per unit area, insect farming only requires about one-eighth of the land needed for beef production. Moreover, insect farming generates minimal waste, as insects can consume food and biomass that would otherwise go to waste, contributing to a circular economy that promotes resource recycling and reuse. Insects can be fed with agricultural waste, such as unused plant stems and food scraps. Additionally, the excrement produced by insects can be used as fertilizer for crops, completing the circular chain. Despite the undeniable sustainability and nutritional benefits of consuming insects, widespread acceptance of incorporating insects into our daily diets still has a long way to go. This paper provides a comprehensive overview of the nutritional value of edible insects, the development of farming and processing technologies, and the problems faced in the marketing of edible insect products and insect foods to improve the reference for how people choose edible insects.

18.
Virulence ; 13(1): 684-697, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35400294

RESUMO

The vegetative insecticidal proteins (Vip3A) secreted by some Bacillus thuringiensis (Bt) strains during vegetative growth are regarded as a new generation of insecticidal toxins. Like insecticidal crystal proteins, they are also used in transgenic crops to control pests. However, their insecticidal mechanisms are far less defined than those of insecticidal crystal protein. Prohibitin 2 (PHB2) is a potential Vip3Aa binding receptor identified from the membrane of Sf9 cells in our previous work. In this paper, we demonstrated the interaction between Vip3Aa and PHB2 using pull-down, dot blotting, microscale thermophoresis, and co-immunoprecipitation assays. PHB2 is distributed on the cell membrane and in the cytoplasm, and the co-localization of PHB2 and Vip3Aa was observed in Sf9 cells using a confocal laser scanning microscope. Moreover, PHB2 could interact with scavenger receptor-C via its SPFH (stomatin, prohibitin, flotillin, and HflK/C) domain. Downregulation of phb2 expression reduced the degree of internalization of Vip3Aa, exacerbated Vip3Aa-mediated mitochondrial damage, and increased Vip3Aa toxicity to Sf9 cells. This suggested that PHB2 performs two different functions: Acting as an interacting partner to facilitate the internalization of Vip3Aa into Sf9 cells and maintaining the stability of mitochondria. The latter has a more important influence on the virulence of Vip3Aa.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Proteínas de Bactérias/metabolismo , Inseticidas/metabolismo , Inseticidas/toxicidade , Mitocôndrias/metabolismo , Células Sf9 , Spodoptera , Virulência
19.
Foods ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37431038

RESUMO

Urolithin A, a metabolite of ellagic acid, has many beneficial biological activities for people. Strains capable of producing urolithin A from ellagic acid have the hope of becoming the next-generation probiotics. However, only a few species of these strains have been reported. In this study, FUA329, a strain capable of converting ellagic acid to urolithin A in vitro, was isolated from the breast milk of healthy Chinese women. The results of morphological observation, physiological and biochemical tests, and 16S rRNA gene sequence analysis confirmed that the strain FUA329 was Streptococcus thermophilus. In addition, the S. thermophilus FUA329 growth phase is consistent with the degradation of ellagic acid, and urolithin A was produced in the stationary phase, with a maximum concentration of 7.38 µM at 50 h. The corresponding conversion efficiency of urolithin A from ellagic acid was 82%. In summary, S. thermophilus FUA329, a novel urolithin A-producing bacterium, would be useful for the industrial production of urolithin A and may be developed as a next-generation probiotic.

20.
Front Nutr ; 9: 1039697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438752

RESUMO

Urolithin A (UA) has received considerable research attention because of its health benefits. However, only a few strains have been reported to produce UA from ellagic acid (EA), and the molecular mechanisms underlying the gut microbiota-mediated transformation of ellagic acid into urolithin A is limited. In the present study, a single strain FUA027 capable of converting ellagic acid into UA in vitro was isolated from the fecal samples. The strain was identified as Enterococcus faecium through the morphological, physiological, biochemical and genetic tests. UA was produced at the beginning of the stationary phase and its levels peaked at 50 h, with the highest concentration being 10.80 µM. The strain Enterococcus faecium FUA027 is the first isolated strain of Enterococcus sp. producing urolithin A from ellagic acid, which may be developed as probiotics and used to explore molecular mechanisms underlying the biotransformation of ellagic acid into UA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA