RESUMO
AIMS/HYPOTHESIS: In pregnancies where the mother has glucokinase-MODY (GCK-MODY), fetal growth is determined by fetal genotype. When the fetus inherits a maternal pathogenic GCK variant, normal fetal growth is anticipated, and insulin treatment of maternal hyperglycaemia is not recommended. At present, fetal genotype is estimated from measurement of fetal abdominal circumference on ultrasound. Non-invasive prenatal testing of fetal GCK genotype (NIPT-GCK) using cell-free DNA in maternal blood has recently been developed. We aimed to compare the diagnostic accuracy of NIPT-GCK with that of ultrasound, and determine the feasibility of using NIPT-GCK to guide pregnancy management. METHODS: We studied an international cohort of pregnant women with hyperglycaemia due to GCK-MODY. We compared the diagnostic accuracy of NIPT-GCK with that of measurement of fetal abdominal circumference at 28 weeks' gestation (n=38) using a directly genotyped offspring sample as the reference standard. In a feasibility study, we assessed the time to result given to clinicians in 43 consecutive pregnancies affected by GCK-MODY between July 2019 and September 2021. RESULTS: In terms of diagnostic accuracy, NIPT-GCK was more sensitive and specific than ultrasound in predicting fetal genotype (sensitivity 100% and specificity 96% for NIPT-GCK vs sensitivity 53% and specificity 61% for fetal abdominal circumference 75th percentile). In terms of feasibility, a valid NIPT-GCK fetal genotype (≥95% probability) was reported in all 38 pregnancies with an amenable variant and repeated samples when needed. The median time to report was 5 weeks (IQR 3-8 weeks). For the 25 samples received before 20 weeks' gestation, results were reported at a median gestational age of 20 weeks (IQR 18-24), with 23/25 (92%) reported before 28 weeks. CONCLUSIONS/INTERPRETATION: Non-invasive prenatal testing of fetal genotype in GCK-MODY pregnancies is highly accurate and is capable of providing a result before the last trimester for most patients. This means that non-invasive prenatal testing of fetal genotype is the optimal approach to management of GCK-MODY pregnancies.
Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Gravidez , Humanos , Feminino , Lactente , Glucoquinase/genética , Estudos de Viabilidade , Medicina de Precisão , Diabetes Mellitus Tipo 2/genética , Hiperglicemia/genética , MutaçãoRESUMO
Pathogenic FOXP3 variants cause immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a progressive autoimmune disease resulting from disruption of the regulatory T cell (Treg) compartment. Assigning pathogenicity to novel variants in FOXP3 is challenging due to the heterogeneous phenotype and variable immunological abnormalities. The number of cells with demethylation at the Treg cell-specific demethylated region (TSDR) is an independent biomarker of IPEX. We aimed to investigate if diagnosing IPEX at presentation with isolated diabetes could allow for effective monitoring of disease progression and assess whether TSDR analysis can aid FOXP3 variant classification and predict disease course. We describe a large genetically diagnosed IPEX cohort (n = 65) and 13 individuals with other monogenic autoimmunity subtypes in whom we quantified the proportion of cells with FOXP3 TSDR demethylation, normalized to the number with CD4 demethylation (%TSDR/CD4) and compare them to 29 unaffected controls. IPEX patients presenting with isolated diabetes (50/65, 77%) often later developed enteropathy (20/50, 40%) with a median interval of 23.5 weeks. %TSDR/CD4 was a good discriminator of IPEX vs. unaffected controls (ROC-AUC 0.81, median 13.6% vs. 8.5%, p < 0.0001) with higher levels of demethylation associated with more severe disease. Patients with other monogenic autoimmunity had a similar %TSDR/CD4 to controls (median 8.7%, p = 1.0). Identifying increased %TSDR/CD4 in patients with novel FOXP3 mutations presenting with isolated diabetes facilitates diagnosis and could offer an opportunity to monitor patients and begin immune modulatory treatment before onset of severe enteropathy.
Assuntos
Diabetes Mellitus , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Linfócitos T Reguladores , Diarreia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Fatores de Transcrição Forkhead/genética , MutaçãoRESUMO
AIMS/HYPOTHESIS: Current clinical guidelines for childhood-onset monogenic diabetes outside infancy are mainly focused on identifying and testing for dominantly inherited, predominantly MODY genes. There are no systematic studies of the recessively inherited causes of monogenic diabetes that are likely to be more common in populations with high rates of consanguinity. We aimed to determine the contribution of recessive causes of monogenic diabetes in paediatric diabetes clinics and to identify clinical criteria by which to select individuals for recessive monogenic diabetes testing. METHODS: We conducted a cross-sectional study of 1093 children from seven paediatric diabetes clinics across Turkey (a population with high rates of consanguinity). We undertook genetic testing of 50 known dominant and recessive causes of monogenic diabetes for 236 children at low risk of type 1 diabetes. As a comparison, we used monogenic diabetes cases from UK paediatric diabetes clinics (a population with low rates of consanguinity). RESULTS: Thirty-four children in the Turkish cohort had monogenic diabetes, equating to a minimal prevalence of 3.1%, similar to that in the UK cohort (p = 0.40). Forty-one per cent (14/34) had autosomal recessive causes in contrast to 1.6% (2/122) in the UK monogenic diabetes cohort (p < 0.0001). All conventional criteria for identifying monogenic diabetes (parental diabetes, not requiring insulin treatment, HbA1c ≤ 58 mmol/mol [≤7.5%] and a composite clinical probability of MODY >10%) assisted the identification of the dominant (all p ≤ 0.0003) but not recessive cases (all p ≥ 0.2) in Turkey. The presence of certain non-autoimmune extra-pancreatic features greatly assisted the identification of recessive (p < 0.0001, OR 66.9) but not dominant cases. CONCLUSIONS/INTERPRETATION: Recessively inherited mutations are a common cause of monogenic diabetes in populations with high rates of consanguinity. Present MODY-focused genetic testing strategies do not identify affected individuals. To detect all cases of monogenic paediatric diabetes, it is crucial that recessive genes are included in genetic panels and that children are selected for testing if they have certain non-autoimmune extra-pancreatic features in addition to current criteria.
Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Testes Genéticos , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Hospitais Pediátricos , Humanos , Lactente , Masculino , Medição de Risco , Turquia/epidemiologia , Reino Unido/epidemiologia , Adulto JovemRESUMO
BACKGROUND: Hyperinsulinism results from inappropriate insulin secretion during hypoglycaemia. Down syndrome is causally linked to a number of endocrine disorders including Type 1 diabetes and neonatal diabetes. We noted a high number of individuals with Down syndrome referred for hyperinsulinism genetic testing, and therefore aimed to investigate whether the prevalence of Down syndrome was increased in our hyperinsulinism cohort compared to the population. METHODS: We identified individuals with Down syndrome referred for hyperinsulinism genetic testing to the Exeter Genomics Laboratory between 2008 and 2020. We sequenced the known hyperinsulinism genes in all individuals and investigated their clinical features. RESULTS: We identified 11 individuals with Down syndrome in a cohort of 2011 patients referred for genetic testing for hyperinsulinism. This represents an increased prevalence compared to the population (2.5/2011 expected vs. 11/2011 observed, p = 6.8 × 10-5 ). A pathogenic ABCC8 mutation was identified in one of the 11 individuals. Of the remaining 10 individuals, five had non-genetic risk factors for hyperinsulinism resulting from the Down syndrome phenotype: intrauterine growth restriction, prematurity, gastric/oesophageal surgery, and asparaginase treatment for leukaemia. For five individuals no risk factors for hypoglycaemia were reported although two of these individuals had transient hyperinsulinism and one was lost to follow-up. CONCLUSIONS: Down syndrome is more common in patients with hyperinsulinism than in the population. This is likely due to an increased burden of non-genetic risk factors resulting from the Down syndrome phenotype. Down syndrome should not preclude genetic testing as coincidental monogenic hyperinsulinism and Down syndrome is possible.
Assuntos
Hiperinsulinismo Congênito , Síndrome de Down , Hiperinsulinismo Congênito/complicações , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/epidemiologia , Síndrome de Down/complicações , Síndrome de Down/diagnóstico , Síndrome de Down/epidemiologia , Testes Genéticos , Humanos , Mutação , Encaminhamento e Consulta , Fatores de RiscoRESUMO
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the ß-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.
Assuntos
Hiperinsulinismo Congênito/genética , Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/genética , Hiperinsulinismo Congênito/diagnóstico , Diabetes Mellitus/diagnóstico , Mutação com Ganho de Função , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Recém-Nascido , Mutação com Perda de FunçãoRESUMO
BACKGROUND: Babies of women with heterozygous pathogenic glucokinase (GCK) variants causing mild fasting hyperglycemia are at risk of macrosomia if they do not inherit the variant. Conversely, babies who inherit a pathogenic hepatocyte nuclear factor 4α (HNF4A) diabetes variant are at increased risk of high birth weight. Noninvasive fetal genotyping for maternal pathogenic variants would inform pregnancy management. METHODS: Droplet digital PCR was used to quantify reference and variant alleles in cell-free DNA extracted from blood from 38 pregnant women heterozygous for a GCK or HNF4A variant and to determine fetal fraction by measurement of informative maternal and paternal variants. Droplet numbers positive for the reference/alternate allele together with the fetal fraction were used in a Bayesian analysis to derive probability for the fetal genotype. The babies' genotypes were ascertained postnatally by Sanger sequencing. RESULTS: Droplet digital PCR assays for GCK or HNF4A variants were validated for testing in all 38 pregnancies. Fetal fraction of ≥2% was demonstrated in at least 1 cell-free DNA sample from 33 pregnancies. A threshold of ≥0.95 for calling homozygous reference genotypes and ≤0.05 for heterozygous fetal genotypes allowed correct genotype calls for all 33 pregnancies with no false-positive results. In 30 of 33 pregnancies, a result was obtained from a single blood sample. CONCLUSIONS: This assay can be used to identify pregnancies at risk of macrosomia due to maternal monogenic diabetes variants.
Assuntos
DNA/sangue , Diabetes Mellitus/genética , Herança Materna , Diagnóstico Pré-Natal/métodos , Biomarcadores/sangue , Diabetes Mellitus/enzimologia , Feminino , Macrossomia Fetal/diagnóstico , Macrossomia Fetal/genética , Feto , Genótipo , Técnicas de Genotipagem/métodos , Técnicas de Genotipagem/estatística & dados numéricos , Glucoquinase/genética , Fator 4 Nuclear de Hepatócito/genética , Humanos , Masculino , Cadeias de Markov , Método de Monte Carlo , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/estatística & dados numéricos , GravidezRESUMO
Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.
Assuntos
Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/terapia , Adolescente , Criança , Pré-Escolar , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/metabolismo , Humanos , LactenteRESUMO
ABCC8 gene mutations with different inheritance patterns have been well described to cause transient and permanent forms of neonatal diabetes with onset of hyperglycemia commonly before the age of 6 months, and rare cases between 6 and 12 months. However, recent analyses have also demonstrated ABCC8 gene mutations in patients with monogenic diabetes (maturity onset diabetes of the young, MODY), with milder clinical phenotypes and later onset of hyperglycemia. We report two siblings with diabetes mellitus due to a novel homozygous p.(Phe1068Ile) (c.3202T>A) missense mutation of the ABCC8 gene, but significantly different phenotypes. The index case was diagnosed with diabetes due to an incidental finding of hyperglycemia at the age of 3 years, while her younger sibling presented with severe hyperglycemia and hyperosmolar dehydration at the age of 10 weeks. The possibility of a significant discordance in the correlation between genotype and phenotype needs to be taken into account when ABCC8 mutation dependent diabetes occurs within the same family. Genetic screening in children with diabetes from consanguineous family needs consideration, especially in case of negative autoantibodies and early onset of hyperglycemia.
Assuntos
Variação Biológica da População , Diabetes Mellitus Tipo 2/genética , Mutação de Sentido Incorreto , Irmãos , Receptores de Sulfonilureias/genética , Adulto , Pré-Escolar , Consanguinidade , Feminino , Humanos , Lactente , Masculino , Paquistão , Linhagem , FenótipoRESUMO
AIMS/HYPOTHESIS: Identifying individuals suitable for monogenic autoimmunity testing and gene discovery studies is challenging: early-onset type 1 diabetes mellitus can cluster with additional autoimmune diseases due to shared polygenic risk and islet- and other organ-specific autoantibodies are present in both monogenic and polygenic aetiologies. We aimed to assess whether a type 1 diabetes genetic risk score (GRS) could identify monogenic autoimmune diabetes and be useful to prioritise individuals for gene discovery studies. METHODS: We studied 79 individuals with diabetes and at least one additional autoimmune disease diagnosed before the age of 5 years. We screened all participants for the seven genes known to cause monogenic autoimmunity that can include diabetes (AIRE, IL2RA, FOXP3, LRBA, STAT1, STAT3, STAT5B). We genotyped the top ten risk alleles for type 1 diabetes, including HLA and non-HLA loci, to generate a type 1 diabetes GRS. RESULTS: Of the 79 individuals studied, 37 (47%) had mutations in the monogenic autoimmunity genes. The type 1 diabetes GRS was lower in these individuals than in those without mutations in these genes (median 9th vs 49th centile of type 1 diabetes controls, p < 0.0001). Age of diabetes diagnosis and type 1 diabetes GRS combined to be highly discriminatory of monogenic autoimmunity (receiver operating characteristic AUC: 0.88). Most individuals without a mutation in a known gene had a high type 1 diabetes GRS, suggesting that they have polygenic clustering of type 1 diabetes and additional autoimmunity and should not be included in gene discovery studies. CONCLUSIONS/INTERPRETATION: We have shown that the type 1 diabetes GRS can identify individuals likely to have monogenic autoimmunity, helping both diagnostic testing and novel monogenic autoimmunity gene discovery. Individuals with monogenic autoimmunity have a different clinical course to those with polygenic type 1 diabetes and can respond well to therapies targeting the underlying genetic defect.
Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Alelos , Autoanticorpos/imunologia , Pré-Escolar , Análise por Conglomerados , Feminino , Predisposição Genética para Doença , Genótipo , Antígenos HLA/imunologia , Humanos , Lactente , Recém-Nascido , Ilhotas Pancreáticas/imunologia , Masculino , Mutação , Curva ROC , Risco , Sensibilidade e EspecificidadeRESUMO
OBJECTIVE: Hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or more rarely feature as part of a syndrome. Screening for mutations in the "syndromic" HH genes is guided by phenotype with genetic testing used to confirm the clinical diagnosis. As HH can be the presenting feature of a syndrome, it is possible that mutations will be missed as these genes are not routinely screened in all newly diagnosed individuals. We investigated the frequency of pathogenic variants in syndromic genes in infants with HH who had not been clinically diagnosed with a syndromic disorder at referral for genetic testing. DESIGN: We used genome sequencing data to assess the prevalence of mutations in syndromic HH genes in an international cohort of patients with HH of unknown genetic cause. PATIENTS: We undertook genome sequencing in 82 infants with HH without a clinical diagnosis of a known syndrome at referral for genetic testing. MEASUREMENTS: Within this cohort, we searched for the genetic aetiologies causing 20 different syndromes where HH had been reported as a feature. RESULTS: We identified a pathogenic KMT2D variant in a patient with HH diagnosed at birth, confirming a genetic diagnosis of Kabuki syndrome. Clinical data received following the identification of the mutation highlighted additional features consistent with the genetic diagnosis. Pathogenic variants were not identified in the remainder of the cohort. CONCLUSIONS: Pathogenic variants in the syndromic HH genes are rare; thus, routine testing of these genes by molecular genetics laboratories is unlikely to be justified in patients without syndromic phenotypes.
Assuntos
Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Face/anormalidades , Feminino , Testes Genéticos , Doenças Hematológicas/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/genética , Doenças Vestibulares/genética , Adulto JovemRESUMO
BACKGROUND: Traditional genetic testing focusses on analysis of one or a few genes according to clinical features; this approach is changing as improved sequencing methods enable simultaneous analysis of several genes. Neonatal diabetes is the presenting feature of many discrete clinical phenotypes defined by different genetic causes. Genetic subtype defines treatment, with improved glycaemic control on sulfonylurea treatment for most patients with potassium channel mutations. We investigated the effect of early, comprehensive testing of all known genetic causes of neonatal diabetes. METHODS: In this large, international, cohort study, we studied patients with neonatal diabetes diagnosed with diabetes before 6 months of age who were referred from 79 countries. We identified mutations by comprehensive genetic testing including Sanger sequencing, 6q24 methylation analysis, and targeted next-generation sequencing of all known neonatal diabetes genes. FINDINGS: Between January, 2000, and August, 2013, genetic testing was done in 1020 patients (571 boys, 449 girls). Mutations in the potassium channel genes were the most common cause (n=390) of neonatal diabetes, but were identified less frequently in consanguineous families (12% in consanguineous families vs 46% in non-consanguineous families; p<0·0001). Median duration of diabetes at the time of genetic testing decreased from more than 4 years before 2005 to less than 3 months after 2012. Earlier referral for genetic testing affected the clinical phenotype. In patients with genetically diagnosed Wolcott-Rallison syndrome, 23 (88%) of 26 patients tested within 3 months from diagnosis had isolated diabetes, compared with three (17%) of 18 patients referred later (>4 years; p<0·0001), in whom skeletal and liver involvement was common. Similarly, for patients with genetically diagnosed transient neonatal diabetes, the diabetes had remitted in only ten (10%) of 101 patients tested early (<3 months) compared with 60 (100%) of the 60 later referrals (p<0·0001). INTERPRETATION: Patients are now referred for genetic testing closer to their presentation with neonatal diabetes. Comprehensive testing of all causes identified causal mutations in more than 80% of cases. The genetic result predicts the best diabetes treatment and development of related features. This model represents a new framework for clinical care with genetic diagnosis preceding development of clinical features and guiding clinical management. FUNDING: Wellcome Trust and Diabetes UK.
Assuntos
Diabetes Mellitus/genética , Testes Genéticos/métodos , Doenças do Recém-Nascido/genética , Mutação/genética , Diabetes Mellitus/classificação , Feminino , Humanos , Lactente , Recém-Nascido , MasculinoRESUMO
CONTEXT: Hyperinsulinemic hypoglycemia (HI) can be the presenting feature of Kabuki syndrome (KS), which is caused by loss-of-function variants in KMT2D or KDM6A. As these genes play a critical role in maintaining methylation status in chromatin, individuals with pathogenic variants have a disease-specific epigenomic profile -an episignature. OBJECTIVE: We evaluated the pathogenicity of three novel partial KDM6A duplications identified in three individuals presenting with neonatal-onset HI without typical features of KS at the time of genetic testing. METHODS: Three different partial KDM6A duplications were identified by routine targeted next generation sequencing for HI and initially classified as variants of uncertain significance (VUS) as their location, and hence their impact on the gene, was not known. Whole genome sequencing (WGS) was undertaken to map the breakpoints of the duplications with DNA methylation profiling performed in two individuals to investigate the presence of a KS-specific episignature. RESULTS: WGS confirmed the duplication in proband 1 as pathogenic as it caused a frameshift in the normal copy of the gene leading to a premature termination codon. The duplications identified in probands 2 and 3 did not alter the reading frame and therefore their significance remained uncertain after WGS. Subsequent DNA methylation profiling identified a KS-specific episignature in proband 2 but not in proband 3. CONCLUSIONS: Our findings confirm a role for KDM6A partial gene duplications in the etiology of KS and highlight the importance of performing in-depth molecular genetic analysis to properly assess the clinical significance of VUS's in the KDM6A gene.
RESUMO
Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 20 , Hiperinsulinismo Congênito , Fator 3-beta Nuclear de Hepatócito , Humanos , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/patologia , Cromossomos Humanos Par 20/genética , Feminino , Masculino , Sequências Reguladoras de Ácido NucleicoRESUMO
Background: Hyperinsulinism/hyperammonemia (HI/HA) syndrome is the second most common type of congenital hyperinsulinism caused by an activating GLUD1 mutation. Objective: The aim of this study was to determine the clinical profile and long-term neurological outcomes in children with HI/HA syndrome. Method: This study is a retrospective review of patients with GLUD1 mutation, treated at two centers in the UK and Russia, over a 15-year period. Different risk factors for neuro-developmental disorders were analysed by Mann-Whitney U test and Fisher's exact P test. Results: We identified 25 cases with GLUD1 mutations (12 males). Median age of presentation was 7 months (12 h-18 months). Hypoglycaemic seizures were the presenting feature in 24 (96%) cases. Twenty four cases responded to diazoxide and protein restriction whilst one patient underwent partial pancreatectomy. In total, 13 cases (52%) developed neurodevelopmental manifestations. Epilepsy (n = 9/25, 36%), learning difficulties (n = 8/25, 32%) and speech delay (n = 8/25, 32%) were the most common neurological manifestation. Median age of presentation for epilepsy was 12 months with generalised tonic-clonic seizures being the most common (n = 4/9, 44.4%) followed by absence seizures (n = 3/9, 33.3%). Early age of presentation (P = 0.02), diazoxide dose (P = 0.04) and a mutation in exon 11 or 12 (P = 0.01) were associated with neurological disorder. Conclusion: HI/HA syndrome is associated with wide spectrum of neurological disorders. These neurological manifestations were more frequent in cases with mutations affecting the GTP-binding site of GLUD1 in our cohort.
RESUMO
CONTEXT: Congenital hyperinsulinism (HI) is characterized by inappropriate insulin secretion despite low blood glucose. Persistent HI is often monogenic, with the majority of cases diagnosed in infancy. Less is known about the contribution of monogenic forms of disease in those presenting in childhood. OBJECTIVE: We investigated the likelihood of finding a genetic cause in childhood-onset HI and explored potential factors leading to later age at presentation of disease. METHODS: We screened known disease-causing genes in 1848 individuals with HI, referred for genetic testing as part of routine clinical care. Individuals were classified as infancy-onset (diagnosed with HI < 12 months of age) or childhood-onset (diagnosed at age 1-16 years). We assessed clinical characteristics and the genotypes of individuals with monogenic HI diagnosed in childhood to gain insights into the later age at diagnosis of HI in these children. RESULTS: We identified the monogenic cause in 24% (n = 42/173) of the childhood-onset HI cohort; this was significantly lower than the proportion of genetic diagnoses in infancy-onset cases (74.5% [n = 1248/1675], P < 0.00001). Most (75%) individuals with genetically confirmed childhood-onset HI were diagnosed before 2.7 years, suggesting these cases represent the tail end of the normal distribution in age at diagnosis. This is supported by the finding that 81% of the variants identified in the childhood-onset cohort were detected in those diagnosed in infancy. CONCLUSION: We have shown that monogenic HI is an important cause of hyperinsulinism presenting outside of infancy. Genetic testing should be considered in children with persistent hyperinsulinism, regardless of age at diagnosis.
Assuntos
Hiperinsulinismo Congênito , Hiperinsulinismo , Hipoglicemia , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Glicemia , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Testes Genéticos , Hiperinsulinismo/diagnóstico , Hiperinsulinismo/genética , Hiperinsulinismo/complicações , Pancreatopatias/genética , Hipoglicemia/diagnóstico , Hipoglicemia/genéticaRESUMO
Congenital hyperinsulinism (CHI) is a condition characterised by severe and recurrent hypoglycaemia in infants and young children caused by inappropriate insulin over-secretion. CHI is of heterogeneous aetiology with a significant genetic component and is often unresponsive to standard medical therapy options. The treatment of CHI can be multifaceted and complex, requiring multidisciplinary input. It is important to manage hypoglycaemia in CHI promptly as the risk of long-term neurodisability arising from neuroglycopaenia is high. The UK CHI consensus on the practice and management of CHI was developed to optimise and harmonise clinical management of patients in centres specialising in CHI as well as in non-specialist centres engaged in collaborative, networked models of care. Using current best practice and a consensus approach, it provides guidance and practical advice in the domains of diagnosis, clinical assessment and treatment to mitigate hypoglycaemia risk and improve long term outcomes for health and well-being.
Assuntos
Hiperinsulinismo Congênito , Criança , Lactente , Humanos , Pré-Escolar , Consenso , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/terapia , Pancreatectomia , Reino UnidoRESUMO
BACKGROUND: There is limited data from India regarding medical management of congenital hyperinsulinism (CHI). OBJECTIVE: To study the molecular diagnosis, medical management and outcomes of children with CHI. STUDY DESIGN: Ambispective. PARTICIPANTS: Children with CHI admitted in from December, 2011 till March, 2020 at a tertiary care referral hospital. OUTCOMES: Clinical and genetic profile, treatment, and response. RESULTS: 42 children with a median age of 3 days (range 1 day to 6 years) were enrolled, of which 23 (54.7%) were diazoxide-responsive. Mutations were identified in 28 out of 41 (68.2%) patients. The commonest gene affected was ABCC8 in 22 patients. The pathogenic variant c.331G>A in ABCC8 gene was identified in 6 unrelated cases from one community. Good response to daily octreotide was seen in 13 of the 19 (68.4%) diazoxide-unresponsive patients. Monthly long-acting octreotide was initiated and daily octreotide could be stopped or tapered in 9 patients. Sirolimus was tried with variable response in 6 patients but was discontinued in 5 due to adverse effects. Four patients had focal CHI, of which one underwent partial pancreatic resection. The disease severity reduced with age and neurodevelopment was good in the patients with identifiable genetic defects who were optimally managed. CONCLUSIONS: Medical management of CHI is effective, if compliance can be ensured, with good quality of life and neurological outcomes.
Assuntos
Hiperinsulinismo Congênito , Qualidade de Vida , Criança , Pré-Escolar , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/terapia , Diazóxido/uso terapêutico , Humanos , Lactente , Recém-Nascido , Mutação , Octreotida/uso terapêutico , Receptores de Sulfonilureias/genéticaRESUMO
OBJECTIVE: The phenotype mediated by HNF4A/HNF1A mutations is variable and includes diazoxide-responsive hyperinsulinaemic hypoglycaemia (HH) and maturity-onset diabetes of the young (MODY). DESIGN: We characterised an international multicentre paediatric cohort of patients with HNF4Aor HNF1Amutations presenting with HH over a 25-year period (1995-2020). METHODS: Clinical and genetic analysis data from five centres were obtained. Diazoxide responsiveness was defined as the ability to maintain normoglycaemia without intravenous glucose. Macrosomia was defined as a birth weight ≥90th centile. SPSS v.27.1 was used for data analysis. RESULTS: A total of 34 patients (70.6% female, n = 24) with a mean age of 7.1 years (s.d. 6.4) were included. A total of 21 different heterozygous HNF4Amutations were identified in 29 patients (four novels). Four different previously described heterozygous HNF1A mutations were detected in five patients. Most (97.1%, n = 33) developed hypoglycaemia by day 2 of life. The mean birth weight was 3.8 kg (s.d. 0.8), with most infants macrosomic (n = 21, 61.8%). Diazoxide was commenced in 28 patients (82.3%); all responded. HH resolved in 20 patients (58.8%) following a median of 0.9 years (interquartile range (IQR): 0.2-6.8). Nine patients (n = 9, 26.5%) had developmental delay. Two patients developed Fanconi syndrome (p.Arg63Trp, HNF4A) and four had other renal or hepatic findings. Five (14.7%) developed MODY at a median of 11.0 years (IQR: 9.0-13.9). Of patients with inherited mutations (n = 25, 73.5%), a family history of diabetes was present in 22 (88.0%). CONCLUSIONS: We build on the knowledge of the natural history and pancreatic and extra-pancreatic phenotypes of HNF4A/HNF1Amutations and illustrate the heterogeneity of this condition.
Assuntos
Heterogeneidade Genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Hiperinsulinismo/genética , Hipoglicemia/genética , Mutação , Adolescente , Peso ao Nascer , Criança , Pré-Escolar , Estudos de Coortes , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diazóxido/uso terapêutico , Síndrome de Fanconi/genética , Feminino , Humanos , Hiperinsulinismo/tratamento farmacológico , Hipoglicemia/tratamento farmacológico , Lactente , Recém-Nascido , Masculino , AnamneseRESUMO
Context: In focal congenital hyperinsulinism (CHI), localized clonal expansion of pancreatic ß-cells causes excess insulin secretion and severe hypoglycemia. Surgery is curative, but not all lesions are amenable to surgery. Objective: We describe surgical and nonsurgical outcomes of focal CHI in a national cohort. Methods: Patients with focal CHI were retrospectively reviewed at 2 specialist centers, 2003-2018. Results: Of 59 patients with focal CHI, 57 had heterozygous mutations in ABCC8/KCNJ11 (51 paternally inherited, 6 de novo). Fluorine-18 L-3,4 dihydroxyphenylalanine positron emission tomography computed tomography scan identified focal lesions in 51 patients. In 5 patients, imaging was inconclusive; the diagnosis was established by frozen section histopathology in 3 patients, a lesion was not identified in 1 patient, and 1 declined surgery. Most patients (n = 56) were unresponsive to diazoxide, of whom 33 were unresponsive or partially responsive to somatostatin receptor analog (SSRA) therapy. Fifty-five patients underwent surgery: 40 had immediate resolution of CHI, 10 had persistent hypoglycemia and a focus was not identified on biopsy in 5. In the 10 patients with persistent hypoglycemia, 7 underwent further surgery with resolution in 4 and ongoing hypoglycemia requiring SSRA in 3. Nine (15% of cohort) patients (1 complex surgical access; 4 biopsy negative; 4 declined surgery) were managed conservatively; medication was discontinued in 8 children at a median (range) age 2.4 (1.5-7.7) years and 1 remains on SSRA at 16 years with improved fasting tolerance and reduction in SSRA dose. Conclusion: Despite a unifying genetic basis of disease, we report inherent heterogeneity in focal CHI patients impacting outcomes of both surgical and medical management.
RESUMO
Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.