Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0275916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36322539

RESUMO

Many humans live in large, complex political centers, composed of multi-scalar communities including neighborhoods and districts. Both today and in the past, neighborhoods form a fundamental part of cities and are defined by their spatial, architectural, and material elements. Neighborhoods existed in ancient centers of various scales, and multiple methods have been employed to identify ancient neighborhoods in archaeological contexts. However, the use of different methods for neighborhood identification within the same spatiotemporal setting results in challenges for comparisons within and between ancient societies. Here, we focus on using a single method-combining Average Nearest Neighbor (ANN) and Kernel Density (KD) analyses of household groups-to identify potential neighborhoods based on clusters of households at 23 ancient centers across the Maya Lowlands. While a one-size-fits all model does not work for neighborhood identification everywhere, the ANN/KD method provides quantifiable data on the clustering of ancient households, which can be linked to environmental zones and urban scale. We found that centers in river valleys exhibited greater household clustering compared to centers in upland and escarpment environments. Settlement patterns on flat plains were more dispersed, with little discrete spatial clustering of households. Furthermore, we categorized the ancient Maya centers into discrete urban scales, finding that larger centers had greater variation in household spacing compared to medium-sized and smaller centers. Many larger political centers possess heterogeneity in household clustering between their civic-ceremonial cores, immediate hinterlands, and far peripheries. Smaller centers exhibit greater household clustering compared to larger ones. This paper quantitatively assesses household clustering among nearly two dozen centers across the Maya Lowlands, linking environment and urban scale to settlement patterns. The findings are applicable to ancient societies and modern cities alike; understanding how humans form multi-scalar social groupings, such as neighborhoods, is fundamental to human experience and social organization.


Assuntos
Características da Família , Características de Residência , Humanos , Cidades , Meio Ambiente , Análise por Conglomerados
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190586, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33012230

RESUMO

Human microbiome studies are increasingly incorporating macroecological approaches, such as community assembly, network analysis and functional redundancy to more fully characterize the microbiome. Such analyses have not been applied to ancient human microbiomes, preventing insights into human microbiome evolution. We address this issue by analysing published ancient microbiome datasets: coprolites from Rio Zape (n = 7; 700 CE Mexico) and historic dental calculus (n = 44; 1770-1855 CE, UK), as well as two novel dental calculus datasets: Maya (n = 7; 170 BCE-885 CE, Belize) and Nuragic Sardinians (n = 11; 1400-850 BCE, Italy). Periodontitis-associated bacteria (Treponema denticola, Fusobacterium nucleatum and Eubacterium saphenum) were identified as keystone taxa in the dental calculus datasets. Coprolite keystone taxa included known short-chain fatty acid producers (Eubacterium biforme, Phascolarctobacterium succinatutens) and potentially disease-associated bacteria (Escherichia, Brachyspira). Overlap in ecological profiles between ancient and modern microbiomes was indicated by similarity in functional response diversity profiles between contemporary hunter-gatherers and ancient coprolites, as well as parallels between ancient Maya, historic UK, and modern Spanish dental calculus; however, the ancient Nuragic dental calculus shows a distinct ecological structure. We detected key ecological signatures from ancient microbiome data, paving the way to expand understanding of human microbiome evolution. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Assuntos
Bactérias/isolamento & purificação , DNA Antigo/análise , Cálculos Dentários/história , Fezes/microbiologia , Microbiota , Arqueologia , Belize , DNA Bacteriano/análise , Cálculos Dentários/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , História Antiga , História Medieval , Humanos , Itália , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA