Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 100(3): 1349-1414, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031468

RESUMO

The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Genitália Masculina/virologia , Viroses/virologia , Humanos , Masculino , Viroses/patologia
2.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999017

RESUMO

Viruses have colonized the germ line of our ancestors on several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few nonretroviruses. Among the recently emerged viruses infecting humans, several target the testis (e.g., human immunodeficiency virus [HIV], Zika virus, and Ebola virus). Here, we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration, and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and simian immunodeficiency virus (SIV) DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque, and one African green monkey in vivo Molecular landscape analysis revealed that early TGCs were enriched in HIV early cofactors up to integration and had overall low antiviral defenses compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate into our germ line and become endogenous in the future, as happened during human evolution for a number of viruses.IMPORTANCE Viruses have colonized the host germ line on many occasions during evolution to eventually become endogenous. Here, we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro Our results indicate that isolated primary TGCs express alternative HIV-1 receptors, allowing virion binding but not entry. However, HIV-1 entered and integrated into TGCs upon cell-associated infection and produced low levels of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication, including integration, suggesting potential for endogenization in future generations.


Assuntos
Células Germinativas/virologia , Infecções por HIV/virologia , HIV-1/genética , Testículo/virologia , Animais , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Humanos , Macaca mulatta , Macrófagos/virologia , Masculino , Neoplasias da Próstata , Seminoma , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Espermatogônias , Internalização do Vírus , Replicação Viral
3.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720516

RESUMO

The sexual transmission of viruses is responsible for the spread of multiple infectious diseases. Although the human immunodeficiency virus (HIV)/AIDS pandemic remains fueled by sexual contacts with infected semen, the origin of virus in semen is still unknown. In a substantial number of HIV-infected men, viral strains present in semen differ from the ones in blood, suggesting that HIV is locally produced within the genital tract. Such local production may be responsible for the persistence of HIV in semen despite effective antiretroviral therapy. In this study, we used single-genome amplification, amplicon sequencing (env gene), and phylogenetic analyses to compare the genetic structures of simian immunodeficiency virus (SIV) populations across all the male genital organs and blood in intravenously inoculated cynomolgus macaques in the chronic stage of infection. Examination of the virus populations present in the male genital tissues of the macaques revealed compartmentalized SIV populations in testis, epididymis, vas deferens, seminal vesicles, and urethra. We found genetic similarities between the viral strains present in semen and those in epididymis, vas deferens, and seminal vesicles. The contribution of male genital organs to virus shedding in semen varied among individuals and could not be predicted based on their infection or proinflammatory cytokine mRNA levels. These data indicate that rather than a single source, multiple genital organs are involved in the release of free virus and infected cells into semen. These findings have important implications for our understanding of systemic virus shedding and persistence in semen and for the design of eradication strategies to access viral reservoirs.IMPORTANCE Semen is instrumental for the dissemination of viruses through sexual contacts. Worryingly, a number of systemic viruses, such as HIV, can persist in this body fluid in the absence of viremia. The local source(s) of virus in semen, however, remains unknown. To elucidate the anatomic origin(s) of the virus released in semen, we compared viral populations present in semen with those in the male genital organs and blood of the Asian macaque model, using single-genome amplification, amplicon sequencing (env gene), and phylogenetic analysis. Our results show that multiple genital tissues harbor compartmentalized strains, some of them (i.e., from epididymis, vas deferens, and seminal vesicles) displaying genetic similarities with the viral populations present in semen. This study is the first to uncover local genital sources of viral populations in semen, providing a new basis for innovative targeted strategies to prevent and eradicate HIV in the male genital tract.


Assuntos
Genitália Masculina/virologia , Macaca fascicularis/virologia , Sêmen/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Carga Viral , Animais , Genômica , Macaca fascicularis/genética , Masculino , Filogenia , RNA Viral , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética
5.
PLoS Pathog ; 10(3): e1003997, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651404

RESUMO

A major barrier to the elimination of HIV-1 infection is the presence of a pool of long-lived, latently infected CD4+ memory T-cells. The search for treatments to re-activate latent HIV to aid in clearance is hindered by the incomplete understanding of the mechanisms that lead to transcriptional silencing of viral gene expression in host cells. Here we identify a previously unknown role for RUNX1 in HIV-1 transcriptional latency. The RUNX proteins, in combination with the co-factor CBF-ß, are critical transcriptional regulators in T-cells. RUNX1 strongly modulates CD4 expression and contributes to CD4+ T-cell function. We show that RUNX1 can bind DNA sequences within the HIV-1 LTR and that this binding represses transcription. Using patient samples we show a negative correlation between RUNX1 expression and viral load. Furthermore, we find that pharmacologic inhibition of RUNX1 by a small molecule inhibitor, Ro5-3335, synergizes with the histone deacetylase (HDAC) inhibitor SAHA (Vorinostat) to enhance the activation of latent HIV-1 in both cell lines and PBMCs from patients. Our findings indicate that RUNX1 and CBF-ß cooperate in cells to modulate HIV-1 replication, identifying for the first time RUNX1 as a cellular factor involved in HIV-1 latency. This work highlights the therapeutic potential of inhibitors of RUNX1 to re-activate virus and aid in clearance of HIV-1.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Infecções por HIV/virologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Fator de Ligação a CCAAT/metabolismo , Imunoprecipitação da Cromatina , Sinergismo Farmacológico , Citometria de Fluxo , HIV-1/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Microscopia Confocal , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Viral , Vorinostat
6.
RNA Biol ; 12(9): 942-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26158194

RESUMO

The retroviral genome consists of an intron-containing transcript that has essential cytoplasmic functions in the infected cell. This viral transcript can escape splicing, circumvent the nuclear checkpoint mechanisms and be transported to the cytoplasm by hijacking the host machinery. Once in the cytoplasm, viral unspliced RNA acts as mRNA to be translated and as genomic RNA to be packaged into nascent viruses. The murine leukemia virus (MLV) is among the first retroviruses discovered and is classified as simple Retroviridae due to its minimal encoding capacity. The oncogenic and transduction abilities of MLV are extensively studied, whereas surprisingly the crucial step of its nuclear export has remained unsolved until 2014. Recent work has revealed the recruitment by MLV of the cellular NXF1/Tap-dependent pathway for export. Unconventionally, MLV uses of Tap to export both spliced and unspliced viral RNAs. Unlike other retroviruses, MLV does not harbor a unique RNA signal for export. Indeed, multiple sequences throughout the MLV genome appear to promote export of the unspliced MLV RNA. We review here the current understanding of the export mechanism and highlight the determinants that influence MLV export. As the molecular mechanism of MLV export is elucidated, we will gain insight into the contribution of the export pathway to the cytoplasmic fate of the viral RNA.


Assuntos
Transporte Ativo do Núcleo Celular , Íntrons , Vírus da Leucemia Murina/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Processamento Alternativo , Animais , Genoma Viral , Humanos , Sequências Repetidas Invertidas , Camundongos , Conformação de Ácido Nucleico , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Motivos de Nucleotídeos , Fases de Leitura Aberta , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/química , Sequências Reguladoras de Ácido Ribonucleico , Transdução de Sinais , Sequências Repetidas Terminais
7.
J Infect Dis ; 210 Suppl 3: S622-30, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25414416

RESUMO

Although semen is the principal vector of human immunodeficiency virus (HIV) dissemination worldwide, the origin of the infected leukocytes and free viral particles in this body fluid remain elusive. Here we review the accumulated evidence of the genital origin of HIV in semen from therapy naive individuals and men receiving suppressive highly active antiretroviral therapy (HAART), summarize the data on the detection and localization of HIV/SIV within the male genital tract, discuss the potential involvement of each genital tissue as a source of infected cells and virions in semen in the absence and presence of HAART, and suggest further studies. Deciphering the exact sources of HIV in semen will be crucial to improving HIV transmission prevention strategies.


Assuntos
Infecções por HIV/transmissão , HIV/fisiologia , Leucócitos/virologia , Sêmen/virologia , Vírion/fisiologia , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Genitália Masculina/virologia , HIV/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Masculino
8.
Nucleic Acids Res ; 40(22): 11684-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042677

RESUMO

MicroRNAs (miRNAs) are 22-nt non-coding RNAs involved in the regulation of cellular gene expression and potential cellular defense against viral infection. Using in silico analyses, we predicted target sites for 22 human miRNAs in the HIV genome. Transfection experiments using synthetic miRNAs showed that five of these miRNAs capably decreased HIV replication. Using one of these five miRNAs, human miR-326 as an example, we demonstrated that the degree of complementarity between the predicted viral sequence and cellular miR-326 correlates, in a Dicer-dependent manner, with the potency of miRNA-mediated restriction of viral replication. Antagomirs to miR-326 that knocked down this cell endogenous miRNA increased HIV-1 replication in cells, suggesting that miR-326 is physiologically functional in moderating HIV-1 replication in human cells.


Assuntos
HIV-1/genética , MicroRNAs/metabolismo , Replicação Viral , Pareamento de Bases , Sequência de Bases , Linhagem Celular , Células Cultivadas , Simulação por Computador , Genoma Viral , HIV-1/fisiologia , Humanos , Células Jurkat , MicroRNAs/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo
9.
J Biol Chem ; 287(49): 40884-90, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23043098

RESUMO

RNAi plays important roles in many biological processes, including cellular defense against viral infection. Components of the RNAi machinery are widely conserved in plants and animals. In mammals, microRNAs (miRNAs) represent an abundant class of cell encoded small noncoding RNAs that participate in RNAi-mediated gene silencing. Here, findings that HIV-1 replication in cells can be regulated by miRNAs and that HIV-1 infection of cells can alter cellular miRNA expression are reviewed. Lessons learned from and questions outstanding about the complex interactions between HIV-1 and cellular miRNAs are discussed.


Assuntos
Regulação Viral da Expressão Gênica , HIV-1/genética , MicroRNAs/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/metabolismo , Linfócitos T CD4-Positivos/virologia , RNA Helicases DEAD-box/metabolismo , Inativação Gênica , Células HeLa , Humanos , Modelos Biológicos , Processamento Pós-Transcricional do RNA , RNA Viral/metabolismo , Ribonuclease III/metabolismo
10.
Biochim Biophys Acta ; 1809(11-12): 686-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21640212

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that control a multitude of critical processes in mammalian cells. Increasing evidence has emerged that host miRNAs serve in animal cells to restrict viral infections. In turn, many viruses encode RNA silencing suppressors (RSS) which are employed to moderate the potency of the cell's miRNA selection against viral replication. Some viruses also encode viral miRNAs. In this review, we summarize findings from human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) that illustrate examples of host cell miRNAs that target the viruses, of RSS encoded by viruses, and of host cell miRNA profile changes that are seen in infected cells. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.


Assuntos
MicroRNAs/metabolismo , RNA Viral/metabolismo , Retroviridae/genética , Regulação Viral da Expressão Gênica , HIV-1/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , MicroRNAs/genética , Modelos Genéticos , Interferência de RNA , RNA Viral/genética , Replicação Viral
11.
Nucleic Acids Res ; 37(19): 6575-86, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19729508

RESUMO

Small non-coding RNAs of 18-25 nt in length can regulate gene expression through the RNA interference (RNAi) pathway. To characterize small RNAs in HIV-1-infected cells, we performed linker-ligated cloning followed by high-throughput pyrosequencing. Here, we report the composition of small RNAs in HIV-1 productively infected MT4 T-cells. We identified several HIV-1 small RNA clones and a highly abundant small 18-nt RNA that is antisense to the HIV-1 primer-binding site (PBS). This 18-nt RNA apparently originated from the dsRNA hybrid formed by the HIV-1 PBS and the 3' end of the human cellular tRNAlys3. It was found to associate with the Ago2 protein, suggesting its possible function in the cellular RNAi machinery for targeting HIV-1.


Assuntos
HIV-1/genética , RNA de Cadeia Dupla/metabolismo , RNA não Traduzido/química , RNA Viral/metabolismo , Linhagem Celular , HIV-1/fisiologia , Humanos , RNA de Transferência de Lisina/metabolismo , RNA não Traduzido/metabolismo , Análise de Sequência de RNA , Linfócitos T/virologia , Replicação Viral
12.
Nucleic Acids Res ; 37(18): 6008-18, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19696076

RESUMO

Numerous cellular factors belonging to the DNA repair machineries, including RAD18, RAD52, XPB and XPD, have been described to counteract human immunodeficiency virus type 1 (HIV-1) replication. Recently, Uracil DNA glycosylase 2 (UNG2), a major determinant of the uracil base excision repair pathway, was shown to undergo rapid proteasome-dependent degradation following HIV-1 infection. However, the specific role of intracellular UNG2 depletion during the course of HIV-1 infection is not clearly understood. Our study shows for the first time that overexpression of UNG2 inhibits HIV-1 replication. We demonstrate that this viral inhibition is correlated with a marked decrease in transcription efficiency as shown by monitoring HIV-1 LTR promoter activity and quantification of HIV-1 RNA levels. Interestingly, UNG2 inhibits LTR activity when stimulated by Tat transactivator or TNFalpha, while barely affected using Phorbol ester activation. Mutational analysis of UNG2 indicates that antiviral activity may require the integrity of the UNG2 catalytic domain. Altogether, our data indicate that UNG2 is likely to represent a new host defense factor specifically counteracted by HIV-1 Vpr. The molecular mechanisms involved in the UNG2 antiviral activity still remain elusive but may rely on the sequestration of specific cellular factor(s) critical for viral transcription.


Assuntos
Repetição Terminal Longa de HIV , HIV-1/genética , Transcrição Gênica , Uracila-DNA Glicosidase/metabolismo , Domínio Catalítico , Linhagem Celular , Integrase de HIV/metabolismo , HIV-1/fisiologia , HIV-2/fisiologia , Humanos , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional , Fator de Necrose Tumoral alfa/farmacologia , Uracila-DNA Glicosidase/química , Vírion/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
13.
Nucleic Acids Res ; 36(14): 4745-53, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18641038

RESUMO

Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs.


Assuntos
DNA Viral/biossíntese , HIV-1/genética , Transcrição Reversa , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , DNA Complementar/análise , DNA Complementar/biossíntese , HIV-1/crescimento & desenvolvimento , HIV-1/fisiologia , Humanos , Dados de Sequência Molecular , Mutação Puntual , Estrutura Terciária de Proteína , Vírion/química , Replicação Viral , Dedos de Zinco , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
14.
Nucleic Acids Res ; 36(7): 2311-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18296486

RESUMO

Retroviruses replicate by converting their positive sense genomic RNA into double-stranded DNA that is subsequently integrated into the host genome. This conversion is catalyzed by reverse transcriptase (RT) early after virus entry into the target cell and is chaperoned by the nucleocapsid protein (NC). In HIV-1, NC is composed of small basic domains flanking two highly conserved CCHC zinc fingers that specifically interact with the genomic RNA and RT. Through specific interactions with the genomic RNA and RT, and possibly with cellular factors, the NC zinc fingers were found to play critical roles in HIV-1 assembly and budding, and later in proviral DNA synthesis and integration. Therefore, intact NC zinc fingers are needed throughout the virus replication cycle. Here, we report for the first time that deleting either one or the two NC zinc fingers leads to an unexpected premature viral DNA synthesis in virus producer cells and the production of noninfectious particles with a high level of viral DNA. In addition to providing the first example of reverse transcription during the late steps of HIV-1 replication, these findings emphasize the fact that the NC zinc fingers are a major target for new drugs against HIV-1.


Assuntos
DNA Viral/biossíntese , HIV-1/genética , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Linhagem Celular , Vírus de DNA/genética , DNA Viral/metabolismo , Transcriptase Reversa do HIV/metabolismo , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Mutação , RNA Viral/metabolismo , Deleção de Sequência , Vírion/genética , Montagem de Vírus , Dedos de Zinco
15.
Retrovirology ; 6: 24, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19261185

RESUMO

Upon cell infection by a retrovirus, the viral DNA polymerase, called reverse transcriptase (RT), copies the genomic RNA to generate the proviral DNA flanked by two long terminal repeats (LTR). A discovery twenty years ago demonstrated that the structural viral nucleocapsid protein (NC) encoded by Gag is an essential cofactor of reverse transcription, chaperoning RT during viral DNA synthesis. However, it is only recently that NC was found to exert a control on the timing of reverse transcription, in a spatio-temporal manner. This brief review summarizes findings on the timing of reverse transcription in wild type HIV-1 and in nucleopcapsid (NC) mutants where virions contain a large amount of newly made viral DNA. This brief review also proposes some explanations of how NC may control late reverse transcription during Gag assembly in virus producer cells.


Assuntos
HIV-1/fisiologia , Transcrição Reversa/fisiologia , DNA Viral/biossíntese , HIV-1/genética , Humanos , Proteínas do Nucleocapsídeo/genética , Retroviridae/genética , Fatores de Tempo
16.
RNA ; 13(12): 2266-76, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17928575

RESUMO

Murine leukemia virus (MLV) specifically packages both genomic RNA (FL RNA) and a subgenomic RNA, which we call SD'. SD' RNA results from alternative splicing of FL RNA. It is reverse-transcribed, and its DNA copy, integrated into the host genome, constitutes a splice donor-associated retroelement. FL and SD' RNAs share a common 5'-UTR that includes the packaging/dimerization signal (Psi). To investigate whether the mechanism of copackaging of these two RNAs involves RNA heterodimerization, we examined the spontaneous dimerization capacity of the two RNAs as large synthetic RNAs transcribed in vitro. We showed that SD' RNA not only formed homodimers with similar efficiency as the FL RNA, but that FL and SD' RNAs also formed FL/SD' heterodimers via Psi sequences. Comparison of the thermostabilities determined for these different dimeric species and competition experiments with Psi RNA fragments indicate the recruitment of similar dimer-linkage interactions within the Psi region. To validate these results, the dimeric state of the SD' RNA was analyzed in MLV particles. RNA capture assays performed with the FL RNA as bait revealed that SD', and not the host packageable U6 or 7SL RNAs, was associated with the FL RNA in virions. Heterodimerization of SD' RNA with FL RNA may argue for the recent concept of a nuclear dimerization at or near the site of transcription and raises the new hypothesis of RNA dimerization during splicing. Furthermore, FL/SD' heterodimerization may have leukemogenic consequences by influencing the pool of genomic dimers that will undergo recombinogenic template switching by reverse transcriptase.


Assuntos
Processamento Alternativo , Vírus da Leucemia Murina/genética , RNA Viral/química , RNA Viral/genética , Sequência de Bases , Dimerização , Ligação Genética , Genoma Viral , Oligorribonucleotídeos/química , Transcrição Gênica , Vírion/genética
17.
Nucleic Acids Res ; 35(8): 2695-704, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17426127

RESUMO

In addition to genomic RNA, HIV-1 particles package cellular and spliced viral RNAs. In order to determine the encapsidation mechanisms of these RNAs, we determined the packaging efficiencies and specificities of genomic RNA, singly and fully spliced HIV mRNAs and different host RNAs species: 7SL RNA, U6 snRNA and GAPDH mRNA using RT-QPCR. Except GAPDH mRNA, all RNAs are selectively encapsidated. Singly spliced RNAs, harboring the Rev-responsible element, and fully spliced viral RNAs, which do not contain this motif, are enriched in virions to similar levels, even though they are exported from the nucleus by different routes. Deletions of key motifs (SL1 and/or SL3) of the packaging signal of genomic RNA indicate that HIV and host RNAs are encapsidated through independent mechanisms, while genomic and spliced viral RNA compete for the same trans-acting factor due to the presence of the 5' common exon containing the TAR, poly(A) and U5-PBS hairpins. Surprisingly, the RNA dimerization initiation site (DIS/SL1) appears to be the main packaging determinant of genomic RNA, but is not involved in packaging of spliced viral RNAs, suggesting a functional interaction with intronic sequences. Active and selective packaging of host and spliced viral RNAs provide new potential functions to these RNAs in the early stages of the virus life cycle.


Assuntos
HIV-1/genética , RNA Viral/metabolismo , Vírion/genética , Montagem de Vírus , Linhagem Celular , Genoma Viral , HIV-1/fisiologia , Humanos , RNA/metabolismo , Splicing de RNA , RNA Viral/biossíntese , RNA Viral/química , Deleção de Sequência , Vírion/metabolismo
18.
Retrovirology ; 5: 118, 2008 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19114009

RESUMO

MicroRNAs (miRNAs) play diverse roles in regulating cellular and developmental functions. We have profiled the miRNA expression in peripheral blood mononuclear cells from 36 HIV-1 seropositive individuals and 12 normal controls. The HIV-1-positive individuals were categorized operationally into four classes based on their CD4+ T-cell counts and their viral loads. We report that specific miRNA signatures can be observed for each of the four classes.


Assuntos
Infecções por HIV/sangue , Soropositividade para HIV , HIV-1/imunologia , MicroRNAs/sangue , MicroRNAs/metabolismo , Estudos de Coortes , Regulação da Expressão Gênica , Infecções por HIV/imunologia , Humanos , Leucócitos Mononucleares/metabolismo , Linfócitos T/metabolismo
19.
J Clin Invest ; 128(10): 4697-4710, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063220

RESUMO

Zika virus (ZIKV) is a teratogenic mosquito-borne flavivirus that can be sexually transmitted from man to woman. The finding of high viral loads and prolonged viral shedding in semen suggests that ZIKV replicates within the human male genital tract, but its target organs are unknown. Using ex vivo infection of organotypic cultures, we demonstrated here that ZIKV replicates in human testicular tissue and infects a broad range of cell types, including germ cells, which we also identified as infected in semen from ZIKV-infected donors. ZIKV had no major deleterious effect on the morphology and hormonal production of the human testis explants. Infection induced a broad antiviral response but no IFN upregulation and minimal proinflammatory response in testis explants, with no cytopathic effect. Finally, we studied ZIKV infection in mouse testis and compared it to human infection. This study provides key insights into how ZIKV may persist in semen and alter semen parameters, as well as a valuable tool for testing antiviral agents.


Assuntos
Células Germinativas/metabolismo , Testículo/metabolismo , Replicação Viral , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Animais , Chlorocebus aethiops , Células Germinativas/patologia , Células Germinativas/virologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Testículo/patologia , Testículo/virologia , Células Vero , Infecção por Zika virus/patologia
20.
Retrovirology ; 4: 30, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17474982

RESUMO

We have shown previously that HIV actively and selectively packages the spliced HIV RNAs into progeny virions. In the present study, by using a RT-QPCR and QPCR strategies, we show that spliced viral RNAs are present in infectious particles and consequently participate, along with the unspliced genomic RNA, to some of the early steps of infection such as the reverse transcription step. This work provides the first quantitative data on reverse transcription of the fully spliced viral RNAs, also called the early transcripts, in target cells but also inside virions. The latter results were obtained by measuring the natural endogenous reverse transcription activity directly on intact HIV-1 particles. Our study reveals that spliced HIV RNAs are reverse transcribed as efficiently as the genomic RNA, both in cells and virions. Interestingly, we also show that reverse transcription of spliced RNAs is 56-fold less sensitive to the inhibitor AZT than reverse transcription of the genomic RNA. Therefore, the selection mediated by inhibitors of reverse transcription used to treat patients could lead to increased representativeness of spliced forms of HIV, thus favoring recombination between the HIV DNA species and facilitating HIV recovery.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/genética , Splicing de RNA , RNA Viral/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Transcrição Reversa , Vírion/genética , Zidovudina/farmacologia , Linhagem Celular , Genoma Viral , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa/efeitos dos fármacos , Vírion/metabolismo , Vírion/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA