Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 156(5): 054110, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135269

RESUMO

Supervised machine learning (ML) and unsupervised ML have been performed on descriptors generated from nonadiabatic (NA) molecular dynamics (MD) trajectories representing non-radiative charge recombination in CsPbI3, a promising solar cell and optoelectronic material. Descriptors generated from every third atom of the iodine sublattice alone are sufficient for a satisfactory prediction of the bandgap and NA coupling for the use in the NA-MD simulation of nonradiative charge recombination, which has a strong influence on material performance. Surprisingly, descriptors based on the cesium sublattice perform better than those of the lead sublattice, even though Cs does not contribute to the relevant wavefunctions, while Pb forms the conduction band and contributes to the valence band. Simplification of the ML models of the NA-MD Hamiltonian achieved by the present analysis helps to overcome the high computational cost of NA-MD through ML and increase the applicability of NA-MD simulations.

2.
J Phys Chem Lett ; 12(50): 12026-12032, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34902248

RESUMO

Using supervised and unsupervised machine learning (ML) on features generated from nonadiabatic (NA) molecular dynamics (MD) trajectories under the classical path approximation, we demonstrate that mutual information with the NA Hamiltonian can be used for feature selection and model simplification. Focusing on CsPbI3, a popular metal halide perovskite, we observe that the chemical environment of a single element is sufficient for predicting the NA Hamiltonian. The conclusion applies even to Cs, although Cs does not contribute to the relevant wave functions. Interatomic distances between Cs and I or Pb and the octahedral tilt angle are the most important features. We reduce a typical 360-parameter ML force-field model to just a 12-parameter NA Hamiltonian model, while maintaining a high NA-MD simulation quality. Because NA-MD is a valuable tool for studying excited state processes, overcoming its high computational cost through simple ML models will streamline NA-MD simulations and expand the ranges of accessible system size and simulation time.


Assuntos
Aprendizado de Máquina , Simulação de Dinâmica Molecular , Compostos de Cálcio/química , Óxidos/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA