Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Environ Interact ; 5(3): e10145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38779338

RESUMO

The necessity for sustainable agricultural practices has propelled a renewed interest in legumes such as faba bean (Vicia faba L.) as agents to help deliver increased diversity to cropped systems and provide an organic source of nitrogen (N). However, the increased cultivation of faba beans has proven recalcitrant worldwide as a result of low yields. So, it is hoped that increased and more stable yields would improve the commercial success of the crop and so the likelihood of cultivation. Enhancing biological N fixation (BNF) in faba beans holds promise not only to enhance and stabilize yields but also to increase residual N available to subsequent cereal crops grown on the same field. In this review, we cover recent progress in enhancing BNF in faba beans. Specifically, rhizobial inoculation and the optimization of fertilizer input and cropping systems have received the greatest attention in the literature. We also suggest directions for future research on the subject. In the short term, modification of crop management practices such as fertilizer and biochar input may offer the benefits of enhanced BNF. In the long term, natural variation in rhizobial strains and faba bean genotypes can be harnessed. Strategies must be optimized on a local scale to realize the greatest benefits. Future research must measure the most useful parameters and consider the economic cost of strategies alongside the advantages of enhanced BNF.

2.
Sci Data ; 10(1): 708, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848459

RESUMO

Future European agriculture should achieve high productivity while limiting its impact on the environment. Legume-supported crop rotations could contribute to these goals, as they request less nitrogen (N) fertilizer inputs, show high resource use efficiency and support biodiversity. However, legumes grown for their grain (pulses) are not widely cultivated in Europe. To further expand their cultivation, it remains crucial to better understand how different cropping and environmental features affect pulses production in Europe. To address this gap, we collected the grain yields of the most cultivated legumes across European countries, from both published scientific papers and unpublished experiments of the European projects LegValue and Legato. Data were integrated into an open-source, easily updatable dataset, including 5229 yield observations for five major pulses: chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), field pea (Pisum sativum L.), lentil (Lens culinaris Medik.), and soybean (Glycine max (L.) Merr.). These data were collected in 177 field experiments across 21 countries, from 37° N (southern Italy) to 63° N (Finland) of latitude, and from ca. 8° W (western Spain) to 47° E (Turkey), between 1980 and 2020. Our dataset can be used to quantify the effects of the soil, climate, and agronomic factors affecting pulses yields in Europe and could contribute to identifying the most suitable cropping areas in Europe to grow pulses.

3.
Viruses ; 13(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960799

RESUMO

There is only limited knowledge of the presence and incidence of viruses in peas within the United Kingdom, therefore high-throughput sequencing (HTS) in combination with a bulk sampling strategy and targeted testing was used to determine the virome in cultivated pea crops. Bulks of 120 leaves collected from twenty fields from around the UK were initially tested by HTS, and presence and incidence of virus was then determined using specific real-time reverse-transcription PCR assays by testing smaller mixed-bulk size samples. This study presents the first finding of turnip yellows virus (TuYV) in peas in the UK and the first finding of soybean dwarf virus (SbDV) in the UK. While TuYV was not previously known to be present in UK peas, it was found in 13 of the 20 sites tested and was present at incidences up to 100%. Pea enation mosaic virus-1, pea enation mosaic virus-2, pea seed-borne mosaic virus, bean yellow mosaic virus, pea enation mosaic virus satellite RNA and turnip yellows virus associated RNA were also identified by HTS. Additionally, a subset of bulked samples were re-sequenced at greater depth to ascertain whether the relatively low depth of sequencing had missed any infections. In each case the same viruses were identified as had been identified using the lower sequencing depth. Sequencing of an isolate of pea seed-borne mosaic virus from 2007 also revealed the presence of TuYV and SbDV, showing that both viruses have been present in the UK for at least a decade, and represents the earliest whole genome of SbDV from Europe. This study demonstrates the potential of HTS to be used as a surveillance tool, or for crop-specific field survey, using a bulk sampling strategy combined with HTS and targeted diagnostics to indicate both presence and incidence of viruses in a crop.


Assuntos
Brassica napus/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Luteoviridae/genética , Luteovirus/genética , Pisum sativum/virologia , Produtos Agrícolas/virologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inquéritos e Questionários , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA