Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 40(24): e108542, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34612526

RESUMO

Bacterial small RNAs (sRNAs) are well known to modulate gene expression by base pairing with trans-encoded transcripts and are typically non-coding. However, several sRNAs have been reported to also contain an open reading frame and thus are considered dual-function RNAs. In this study, we discovered a dual-function RNA from Vibrio cholerae, called VcdRP, harboring a 29 amino acid small protein (VcdP), as well as a base-pairing sequence. Using a forward genetic screen, we identified VcdRP as a repressor of cholera toxin production and link this phenotype to the inhibition of carbon transport by the base-pairing segment of the regulator. By contrast, we demonstrate that the VcdP small protein acts downstream of carbon transport by binding to citrate synthase (GltA), the first enzyme of the citric acid cycle. Interaction of VcdP with GltA results in increased enzyme activity and together VcdR and VcdP reroute carbon metabolism. We further show that transcription of vcdRP is repressed by CRP allowing us to provide a model in which VcdRP employs two different molecular mechanisms to synchronize central metabolism in V. cholerae.


Assuntos
Carbono/metabolismo , Toxina da Cólera/metabolismo , Citrato (si)-Sintase/metabolismo , RNA Bacteriano/genética , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Testes Genéticos , Fases de Leitura Aberta , Fenótipo , RNA Bacteriano/metabolismo , Vibrio cholerae/genética
2.
EMBO J ; 38(16): e101650, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31313835

RESUMO

Small regulatory RNAs (sRNAs) are crucial components of many stress response systems. The envelope stress response (ESR) of Gram-negative bacteria is a paradigm for sRNA-mediated stress management and involves, among other factors, the alternative sigma factor E (σE ) and one or more sRNAs. In this study, we identified the MicV sRNA as a new member of the σE regulon in Vibrio cholerae. We show that MicV acts redundantly with another sRNA, VrrA, and that both sRNAs share a conserved seed-pairing domain allowing them to regulate multiple target mRNAs. V. cholerae lacking σE displayed increased sensitivity toward antimicrobials, and over-expression of either of the sRNAs suppressed this phenotype. Laboratory selection experiments using a library of synthetic sRNA regulators revealed that the seed-pairing domain of σE -dependent sRNAs is strongly enriched among sRNAs identified under membrane-damaging conditions and that repression of OmpA is crucial for sRNA-mediated stress relief. Together, our work shows that MicV and VrrA act as global regulators in the ESR of V. cholerae and provides evidence that bacterial sRNAs can be functionally annotated by their seed-pairing sequences.


Assuntos
Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Vibrio cholerae/genética , Proteínas da Membrana Bacteriana Externa/genética , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , Estresse Fisiológico
3.
Infection ; 51(1): 239-245, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35596057

RESUMO

PURPOSE: Omicron is rapidly spreading as a new SARS-CoV-2 variant of concern (VOC). The question whether this new variant has an impact on SARS-CoV-2 rapid antigen test (RAT) performance is of utmost importance. To obtain an initial estimate regarding differences of RATs in detecting omicron and delta, seven commonly used SARS-CoV-2 RATs from different manufacturers were analysed using cell culture supernatants and clinical specimens. METHODS: For this purpose, cell culture-expanded omicron and delta preparations were serially diluted in Dulbecco's modified Eagle's Medium (DMEM) and the Limit of Detection (LoD) for both VOCs was determined. Additionally, clinical specimens stored in viral transport media or saline (n = 51) were investigated to complement in vitro results with cell culture supernatants. Ct values and RNA concentrations were determined via quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: The in vitro determination of the LoD showed no obvious differences in detection of omicron and delta for the RATs examined. The LoD in this study was at a dilution level of 1:1,000 (corresponding to 3.0-5.6 × 106 RNA copies/mL) for tests I-V and at a dilution level of 1:100 (corresponding to 3.7-4.9 × 107 RNA copies/mL) for tests VI and VII. Based on clinical specimens, no obvious differences were observed between RAT positivity rates when comparing omicron to delta in this study setting. Overall positivity rates varied between manufacturers with 30-81% for omicron and 42-71% for delta. Test VII was only conducted in vitro with cell culture supernatants for feasibility reasons. In the range of Ct < 23, positivity rates were 50-100% for omicron and 67-93% for delta. CONCLUSION: In this study, RATs from various manufacturers were investigated, which displayed no obvious differences in terms of analytical LoD in vitro and RAT positivity rates based on clinical samples comparing the VOCs omicron and delta. However, differences between tests produced by various manufacturers were detected. In terms of clinical samples, a focus of this study was on specimens with high virus concentrations. Further systematic, clinical and laboratory studies utilizing large datasets are urgently needed to confirm reliable performance in terms of sensitivity and specificity for all individual RATs and SARS-CoV-2 variants.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Técnicas de Cultura de Células , RNA
4.
Virol J ; 19(1): 76, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473640

RESUMO

BACKGROUND: During the ongoing Covid-19 pandemic caused by the emerging virus SARS-CoV-2, research in the field of coronaviruses has expanded tremendously. The genome of SARS-CoV-2 has rapidly acquired numerous mutations, giving rise to several Variants of Concern (VOCs) with altered epidemiological, immunological, and pathogenic properties. METHODS: As cell culture models are important tools to study viruses, we investigated replication kinetics and infectivity of SARS-CoV-2 in the African Green Monkey-derived Vero E6 kidney cell line and the two human cell lines Caco-2, a colon epithelial carcinoma cell line, and the airway epithelial carcinoma cell line Calu-3. We assessed viral RNA copy numbers and infectivity of viral particles in cell culture supernatants at different time points ranging from 2 to 96 h post-infection. RESULTS: We here describe a systematic comparison of growth kinetics of the five SARS-CoV-2 VOCs Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, and Omicron/B.1.1.529 and a non-VOC/B.1.1 strain on three different cell lines to provide profound information on the differential behaviour of VOCs in different cell lines for researchers worldwide. We show distinct differences in viral replication kinetics of the SARS-CoV-2 non-VOC and five VOCs on the three cell culture models Vero E6, Caco-2, and Calu-3. CONCLUSION: This is the first systematic comparison of all SARS-CoV-2 VOCs on three different cell culture models. This data provides support for researchers worldwide in their experimental design for work on SARS-CoV-2. It is recommended to perform virus isolation and propagation on Vero E6 while infection studies or drug screening and antibody-based assays should rather be conducted on the human cell lines Caco-2 and Calu-3.


Assuntos
COVID-19 , Carcinoma , Células CACO-2 , Técnicas de Cultura de Células , Chlorocebus aethiops , Humanos , Cinética , Pandemias , SARS-CoV-2/genética
5.
Proc Natl Acad Sci U S A ; 116(28): 14216-14221, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239347

RESUMO

Collective behavior in spatially structured groups, or biofilms, is the norm among microbes in their natural environments. Though biofilm formation has been studied for decades, tracing the mechanistic and ecological links between individual cell morphologies and the emergent features of cell groups is still in its infancy. Here we use single-cell-resolution confocal microscopy to explore biofilms of the human pathogen Vibrio cholerae in conditions mimicking its marine habitat. Prior reports have noted the occurrence of cellular filamentation in V. cholerae, with variable propensity to filament among both toxigenic and nontoxigenic strains. Using a filamenting strain of V. cholerae O139, we show that cells with this morphotype gain a profound competitive advantage in colonizing and spreading on particles of chitin, the material many marine Vibrio species depend on for growth in seawater. Furthermore, filamentous cells can produce biofilms that are independent of primary secreted components of the V. cholerae biofilm matrix; instead, filamentous biofilm architectural strength appears to derive at least in part from the entangled mesh of cells themselves. The advantage gained by filamentous cells in early chitin colonization and growth is countered in long-term competition experiments with matrix-secreting V. cholerae variants, whose densely packed biofilm structures displace competitors from surfaces. Overall, our results reveal an alternative mode of biofilm architecture that is dependent on filamentous cell morphology and advantageous in environments with rapid chitin particle turnover. This insight provides an environmentally relevant example of how cell morphology can impact bacterial fitness.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Biofilmes/crescimento & desenvolvimento , Cólera/microbiologia , Vibrio cholerae/crescimento & desenvolvimento , Citoesqueleto de Actina/metabolismo , Quitina/metabolismo , Humanos , Microscopia Confocal , Água do Mar , Análise de Célula Única , Propriedades de Superfície , Vibrio cholerae/patogenicidade , Vibrio cholerae/ultraestrutura
6.
Euro Surveill ; 26(16)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33890568

RESUMO

SARS-CoV-2 variants of concern (VOC) should not escape molecular surveillance. We investigated if SARS-CoV-2 rapid antigen tests (RATs) could detect B.1.1.7 and B.1.351 VOCs in certain laboratory conditions. Infectious cell culture supernatants containing B.1.1.7, B.1.351 or non-VOC SARS-CoV-2 were respectively diluted both in DMEM and saliva. Dilutions were analysed with Roche, Siemens, Abbott, nal von minden and RapiGEN RATs. While further studies with appropriate real-life clinical samples are warranted, all RATs detected B.1.1.7 and B.1.351, generally comparable to non-VOC strain.


Assuntos
COVID-19 , SARS-CoV-2 , Teste Sorológico para COVID-19 , Alemanha , Humanos
7.
J Glob Antimicrob Resist ; 32: 164-166, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36462736

RESUMO

OBJECTIVES: The emergence of SARS-CoV-2 in 2019 led to a severe pandemic situation. Treatment options are limited, and the efficacy of vaccines decreases due to mutations in SARS-CoV-2 strains. Therefore, new treatment options are urgently needed, and computational compound screenings are used to predict drugs quickly. One of these screenings revealed farnesyltransferase inhibitors (FTIs) as potential candidates. METHODS: SARS-CoV-2 infected Calu-3 cells were treated with lonafarnib and tipifarnib and fold change viral replication of SARS-CoV-2 was measured using RT-qPCR. Furthermore, morphological changes, like CPE formation, were evaluated. Effects on Calu-3 cells were analyzed using MTT assay. RESULTS: We demonstrated that the FTIs lonafarnib and tipifarnib have an effect on SARS-CoV-2 Wildtype and the Delta variant. Both FTIs dose-dependently reduced morphological changes and the formation of cytopathic effects in SARS-CoV-2 infected Calu-3 cells. The effect of the FTIs on Omicron needs to be further elucidated because of inefficient viral replication. CONCLUSIONS: The FTI lonafarnib and tipifarnib might be effective drugs against different SARS-CoV-2 strains.


Assuntos
COVID-19 , Humanos , Farnesiltranstransferase , SARS-CoV-2 , Inibidores Enzimáticos
8.
Genes (Basel) ; 14(7)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37510253

RESUMO

As the MHC-I-pathway is key to antigen presentation to cytotoxic T-cells and, therefore, recognition by the host adaptive immune system, we hypothesized that SARS-CoV-2 including its Variants of Concern (VOCs), influences MHC-I expression on epithelial cell surfaces as an immune evasion strategy. We conducted an in vitro time course experiment with the human airway epithelial cell line Calu-3 and the human colorectal adenocarcinoma cell line Caco-2. Cells were infected with SARS-CoV-2 strains non-VOC/B.1.1, Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, and Delta/B.1.617.2. At 2, 24, 48 and 72 h post-infection we performed RT-qPCR to track viral replication. Simultaneously, we performed intracellular staining with a serum of a double-vaccinated healthy adult containing a high amount of spike protein antibody. In flow cytometry experiments, we differentiated between infected (spike protein positive) and bystander (spike protein negative) cells. To compare their HLA expression levels, cells were stained extracellularly with anti-HLA-A-IgG and anti-HLA-B,C-IgG. While HLA-A expression was stable on infected Calu-3 cells for all variants, it increased to different degrees on bystander cells in samples infected with VOCs Beta, Gamma, Delta, or non-VOC over the time course analyzed. In contrast, HLA-A levels were stable in bystander Calu-3 cells in samples infected with the Alpha variant. The upregulation of MHC-I on spike protein negative bystander cells in Calu-3 cell cultures infected with Beta, Gamma, Delta, and partly non-VOC might suggest that infected cells are still capable of secreting inflammatory cytokines like type-I interferons stimulating the MHC-I expression on bystander cells. In comparison, there was no distinct effect on HLA expression level on Caco-2 cells of any of the VOCs or non-VOC. Further investigations of the full range of immune evasion strategies of SARS-CoV-2 variants are warranted.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Células CACO-2 , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/genética , Imunoglobulina G
9.
Nat Commun ; 13(1): 7585, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482060

RESUMO

Small regulatory RNAs (sRNAs) acting in concert with the RNA chaperone Hfq are prevalent in many bacteria and typically act by base-pairing with multiple target transcripts. In the human pathogen Vibrio cholerae, sRNAs play roles in various processes including antibiotic tolerance, competence, and quorum sensing (QS). Here, we use RIL-seq (RNA-interaction-by-ligation-and-sequencing) to identify Hfq-interacting sRNAs and their targets in V. cholerae. We find hundreds of sRNA-mRNA interactions, as well as RNA duplexes formed between two sRNA regulators. Further analysis of these duplexes identifies an RNA sponge, termed QrrX, that base-pairs with and inactivates the Qrr1-4 sRNAs, which are known to modulate the QS pathway. Transcription of qrrX is activated by QrrT, a previously uncharacterized LysR-type transcriptional regulator. Our results indicate that QrrX and QrrT are required for rapid conversion from individual to community behaviours in V. cholerae.


Assuntos
Vibrio cholerae , Humanos , Vibrio cholerae/genética , RNA
10.
Microorganisms ; 9(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576862

RESUMO

Rapid antigen tests (RATs) are an integral part of SARS-CoV-2 containment strategies. As emerging variants of concern (VOCs) displace the initially circulating strains, it is crucial that RATs do not fail to detect these new variants. In this study, four RATs for nasal swab testing were investigated using cultured strains of B.1.1 (non-VOC), B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta). Based on dilution series in cell culture medium and pooled saliva, the limit of detection of these RATs was determined in a laboratory setting. Further investigations on cross-reactivity were conducted using recombinant N-protein from seasonal human coronaviruses (hCoVs). RATs evaluated showed an overall comparable performance with cultured strains of the non-VOC B.1.1 and the VOCs Alpha, Beta, Gamma, and Delta. No cross-reactivity was detected with recombinant N-protein of the hCoV strains HKU1, OC43, NL63, and 229E. A continuous evaluation of SARS-CoV-2 RAT performance is required, especially with regard to evolving mutations. Moreover, cross-reactivity and interference with pathogens and other substances on the test performance of RATs should be consistently investigated to ensure suitability in the context of SARS-CoV-2 containment.

11.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744240

RESUMO

Negative feedback regulation, that is the ability of a gene to repress its own synthesis, is the most abundant regulatory motif known to biology. Frequently reported for transcriptional regulators, negative feedback control relies on binding of a transcription factor to its own promoter. Here, we report a novel mechanism for gene autoregulation in bacteria relying on small regulatory RNA (sRNA) and the major endoribonuclease, RNase E. TIER-seq analysis (transiently-inactivating-an-endoribonuclease-followed-by-RNA-seq) revealed ~25,000 RNase E-dependent cleavage sites in Vibrio cholerae, several of which resulted in the accumulation of stable sRNAs. Focusing on two examples, OppZ and CarZ, we discovered that these sRNAs are processed from the 3' untranslated region (3' UTR) of the oppABCDF and carAB operons, respectively, and base-pair with their own transcripts to inhibit translation. For OppZ, this process also triggers Rho-dependent transcription termination. Our data show that sRNAs from 3' UTRs serve as autoregulatory elements allowing negative feedback control at the post-transcriptional level.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/fisiologia , Pequeno RNA não Traduzido/fisiologia , Vibrio cholerae/genética , Endorribonucleases/metabolismo , Retroalimentação Fisiológica , Biossíntese de Proteínas , RNA-Seq , Fator Rho/metabolismo , Regiões Terminadoras Genéticas , Vibrio cholerae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA