Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 570(7761): 385-389, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142840

RESUMO

Cell-free DNA in the blood provides a non-invasive diagnostic avenue for patients with cancer1. However, characteristics of the origins and molecular features of cell-free DNA are poorly understood. Here we developed an approach to evaluate fragmentation patterns of cell-free DNA across the genome, and found that profiles of healthy individuals reflected nucleosomal patterns of white blood cells, whereas patients with cancer had altered fragmentation profiles. We used this method to analyse the fragmentation profiles of 236 patients with breast, colorectal, lung, ovarian, pancreatic, gastric or bile duct cancer and 245 healthy individuals. A machine learning model that incorporated genome-wide fragmentation features had sensitivities of detection ranging from 57% to more than 99% among the seven cancer types at 98% specificity, with an overall area under the curve value of 0.94. Fragmentation profiles could be used to identify the tissue of origin of the cancers to a limited number of sites in 75% of cases. Combining our approach with mutation-based cell-free DNA analyses detected 91% of patients with cancer. The results of these analyses highlight important properties of cell-free DNA and provide a proof-of-principle approach for the screening, early detection and monitoring of human cancer.


Assuntos
DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Fragmentação do DNA , Genoma Humano/genética , Neoplasias/diagnóstico , Neoplasias/genética , Estudos de Casos e Controles , Estudos de Coortes , Análise Mutacional de DNA , Humanos , Aprendizado de Máquina , Mutação , Neoplasias/sangue , Neoplasias/patologia
2.
Nature ; 526(7572): 263-7, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26416732

RESUMO

Colorectal cancer is the third most common cancer worldwide, with 1.2 million patients diagnosed annually. In late-stage colorectal cancer, the most commonly used targeted therapies are the monoclonal antibodies cetuximab and panitumumab, which prevent epidermal growth factor receptor (EGFR) activation. Recent studies have identified alterations in KRAS and other genes as likely mechanisms of primary and secondary resistance to anti-EGFR antibody therapy. Despite these efforts, additional mechanisms of resistance to EGFR blockade are thought to be present in colorectal cancer and little is known about determinants of sensitivity to this therapy. To examine the effect of somatic genetic changes in colorectal cancer on response to anti-EGFR antibody therapy, here we perform complete exome sequence and copy number analyses of 129 patient-derived tumour grafts and targeted genomic analyses of 55 patient tumours, all of which were KRAS wild-type. We analysed the response of tumours to anti-EGFR antibody blockade in tumour graft models and in clinical settings and functionally linked therapeutic responses to mutational data. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Novel alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade. Amplifications and sequence changes in the tyrosine kinase receptor adaptor gene IRS2 were identified in tumours with increased sensitivity to anti-EGFR therapy. Therapeutic resistance to EGFR blockade could be overcome in tumour graft models through combinatorial therapies targeting actionable genes. These analyses provide a systematic approach to evaluating response to targeted therapies in human cancer, highlight new mechanisms of responsiveness to anti-EGFR therapies, and delineate new avenues for intervention in managing colorectal cancer.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Genoma Humano/genética , Genômica , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Neoplasias Colorretais/metabolismo , Variações do Número de Cópias de DNA/genética , Receptores ErbB/química , Receptores ErbB/genética , Exoma/genética , Feminino , Humanos , Proteínas Substratos do Receptor de Insulina/genética , MAP Quinase Quinase 1/genética , Camundongos , Terapia de Alvo Molecular , Mutação/genética , Panitumumabe , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor ErbB-2/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Adv Anat Pathol ; 26(1): 31-39, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30256228

RESUMO

Although pathologic lesions in the pancreas are 3-dimensional (3D) complex structures, we currently use thin 2D hematoxylin and eosin stained slides to study and diagnose pancreatic pathology. Two technologies, tissue clearing and advanced microscopy, have recently converged, and when used together they open the remarkable world of 3D anatomy and pathology to pathologists. Advances in tissue clearing and antibody penetration now make even dense fibrotic tissues amenable to clearing, and light sheet and confocal microscopies allow labeled cells deep within these cleared tissues to be visualized. Clearing techniques can be categorized as solvent-based or aqueous-based techniques, but both clearing methods consist of 4 fundamental steps, including pretreatment of specimens, permeabilization and/or removal of lipid, immunolabeling with antibody penetration, and clearing by refractive index matching. Specialized microscopes, including the light sheet microscope, the 2-photon microscope, and the confocal microscope, can then be used to visualize and evaluate the 3D histology. Both endocrine and exocrine pancreas pathology can then be visualized. The application of labeling and clearing to surgically resected human pancreatic parenchyma can provide detailed visualization of the complexities of normal pancreatic anatomy. It also can be used to characterize the 3D architecture of disease processes ranging from precursor lesions, such as pancreatic intraepithelial neoplasia lesions and intraductal papillary mucinous neoplasms, to infiltrating pancreatic ductal adenocarcinomas. The evaluation of 3D histopathology, including pathology of the pancreatic lesions, will provide new insights into lesions that previously were seen, and thought of, only in 2 dimensions.


Assuntos
Carcinoma Ductal Pancreático/patologia , Imageamento Tridimensional , Microscopia Confocal , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/diagnóstico , Humanos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Neoplasias Pancreáticas/diagnóstico , Tecido Parenquimatoso/patologia , Neoplasias Pancreáticas
4.
Sci Transl Med ; 16(738): eadj9283, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478628

RESUMO

Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches. We developed a de novo kmer finding approach, called ARTEMIS (Analysis of RepeaT EleMents in dISease), to identify repeat elements from whole-genome sequencing. Using this method, we analyzed 1.2 billion kmers in 2837 tissue and plasma samples from 1975 patients, including those with lung, breast, colorectal, ovarian, liver, gastric, head and neck, bladder, cervical, thyroid, or prostate cancer. We identified tumor-specific changes in these patients in 1280 repeat element types from the LINE, SINE, LTR, transposable element, and human satellite families. These included changes to known repeats and 820 elements that were not previously known to be altered in human cancer. Repeat elements were enriched in regions of driver genes, and their representation was altered by structural changes and epigenetic states. Machine learning analyses of genome-wide repeat landscapes and fragmentation profiles in cfDNA detected patients with early-stage lung or liver cancer in cross-validated and externally validated cohorts. In addition, these repeat landscapes could be used to noninvasively identify the tissue of origin of tumors. These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Hepáticas , Masculino , Humanos , Neoplasias Hepáticas/genética , Elementos de DNA Transponíveis
5.
Nat Commun ; 12(1): 5060, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417454

RESUMO

Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.


Assuntos
DNA Tumoral Circulante/metabolismo , Fragmentação do DNA , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Diagnóstico Diferencial , Detecção Precoce de Câncer , Feminino , Genoma Humano , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Metástase Neoplásica , Estadiamento de Neoplasias , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Adulto Jovem
6.
Nat Commun ; 11(1): 525, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988276

RESUMO

Liquid biopsies are providing new opportunities for detection of residual disease in cell-free DNA (cfDNA) after surgery but may be confounded through identification of alterations arising from clonal hematopoiesis. Here, we identify circulating tumor-derived DNA (ctDNA) alterations through ultrasensitive targeted sequencing analyses of matched cfDNA and white blood cells from the same patient. We apply this approach to analyze samples from patients in the CRITICS trial, a phase III randomized controlled study of perioperative treatment in patients with operable gastric cancer. After filtering alterations from matched white blood cells, the presence of ctDNA predicts recurrence when analyzed within nine weeks after preoperative treatment and after surgery in patients eligible for multimodal treatment. These analyses provide a facile method for distinguishing ctDNA from other cfDNA alterations and highlight the utility of ctDNA as a predictive biomarker of patient outcome to perioperative cancer therapy and surgical resection in patients with gastric cancer.


Assuntos
Ácidos Nucleicos Livres/química , DNA de Neoplasias/análise , Leucócitos/química , Recidiva Local de Neoplasia/diagnóstico , Análise de Sequência de DNA , Neoplasias Gástricas/diagnóstico , DNA de Neoplasias/química , Hematopoese , Humanos , Prognóstico , Estudo de Prova de Conceito , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias Gástricas/genética , Análise de Sobrevida
7.
Cancer Res ; 79(6): 1214-1225, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30541742

RESUMO

Despite the initial successes of immunotherapy, there is an urgent clinical need for molecular assays that identify patients more likely to respond. Here, we report that ultrasensitive measures of circulating tumor DNA (ctDNA) and T-cell expansion can be used to assess responses to immune checkpoint blockade in metastatic lung cancer patients (N = 24). Patients with clinical response to therapy had a complete reduction in ctDNA levels after initiation of therapy, whereas nonresponders had no significant changes or an increase in ctDNA levels. Patients with initial response followed by acquired resistance to therapy had an initial drop followed by recrudescence in ctDNA levels. Patients without a molecular response had shorter progression-free and overall survival compared with molecular responders [5.2 vs. 14.5 and 8.4 vs. 18.7 months; HR 5.36; 95% confidence interval (CI), 1.57-18.35; P = 0.007 and HR 6.91; 95% CI, 1.37-34.97; P = 0.02, respectively], which was detected on average 8.7 weeks earlier and was more predictive of clinical benefit than CT imaging. Expansion of T cells, measured through increases of T-cell receptor productive frequencies, mirrored ctDNA reduction in response to therapy. We validated this approach in an independent cohort of patients with early-stage non-small cell lung cancer (N = 14), where the therapeutic effect was measured by pathologic assessment of residual tumor after anti-PD1 therapy. Consistent with our initial findings, early ctDNA dynamics predicted pathologic response to immune checkpoint blockade. These analyses provide an approach for rapid determination of therapeutic outcomes for patients treated with immune checkpoint inhibitors and have important implications for the development of personalized immune targeted strategies.Significance: Rapid and sensitive detection of circulating tumor DNA dynamic changes and T-cell expansion can be used to guide immune targeted therapy for patients with lung cancer.See related commentary by Zou and Meyerson, p. 1038.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , DNA Tumoral Circulante/análise , DNA de Neoplasias/análise , Neoplasias Pulmonares/imunologia , Neoplasia Residual/imunologia , Nivolumabe/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/genética , Estudos de Coortes , DNA de Neoplasias/genética , Seguimentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasia Residual/tratamento farmacológico , Neoplasia Residual/genética , Neoplasia Residual/patologia , Prognóstico , Taxa de Sobrevida
8.
Nat Commun ; 8(1): 1093, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061967

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is the most frequent type of ovarian cancer and has a poor outcome. It has been proposed that fallopian tube cancers may be precursors of HGSOC but evolutionary evidence for this hypothesis has been limited. Here, we perform whole-exome sequence and copy number analyses of laser capture microdissected fallopian tube lesions (p53 signatures, serous tubal intraepithelial carcinomas (STICs), and fallopian tube carcinomas), ovarian cancers, and metastases from nine patients. The majority of tumor-specific alterations in ovarian cancers were present in STICs, including those affecting TP53, BRCA1, BRCA2 or PTEN. Evolutionary analyses reveal that p53 signatures and STICs are precursors of ovarian carcinoma and identify a window of 7 years between development of a STIC and initiation of ovarian carcinoma, with metastases following rapidly thereafter. Our results provide insights into the etiology of ovarian cancer and have implications for prevention, early detection and therapeutic intervention of this disease.


Assuntos
Cistadenocarcinoma Seroso/genética , Neoplasias das Tubas Uterinas/patologia , Tubas Uterinas/patologia , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Ovarianas/genética , Alelos , Variações do Número de Cópias de DNA/genética , Neoplasias das Tubas Uterinas/metabolismo , Tubas Uterinas/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Microdissecção e Captura a Laser , Neoplasias Císticas, Mucinosas e Serosas/metabolismo
9.
Cancer Discov ; 7(3): 264-276, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28031159

RESUMO

Immune checkpoint inhibitors have shown significant therapeutic responses against tumors containing increased mutation-associated neoantigen load. We have examined the evolving landscape of tumor neoantigens during the emergence of acquired resistance in patients with non-small cell lung cancer after initial response to immune checkpoint blockade with anti-PD-1 or anti-PD-1/anti-CTLA-4 antibodies. Analyses of matched pretreatment and resistant tumors identified genomic changes resulting in loss of 7 to 18 putative mutation-associated neoantigens in resistant clones. Peptides generated from the eliminated neoantigens elicited clonal T-cell expansion in autologous T-cell cultures, suggesting that they generated functional immune responses. Neoantigen loss occurred through elimination of tumor subclones or through deletion of chromosomal regions containing truncal alterations, and was associated with changes in T-cell receptor clonality. These analyses provide insight into the dynamics of mutational landscapes during immune checkpoint blockade and have implications for the development of immune therapies that target tumor neoantigens.Significance: Acquired resistance to immune checkpoint therapy is being recognized more commonly. This work demonstrates for the first time that acquired resistance to immune checkpoint blockade can arise in association with the evolving landscape of mutations, some of which encode tumor neoantigens recognizable by T cells. These observations imply that widening the breadth of neoantigen reactivity may mitigate the development of acquired resistance. Cancer Discov; 7(3); 264-76. ©2017 AACR.See related commentary by Yang, p. 250This article is highlighted in the In This Issue feature, p. 235.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/terapia , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias Pulmonares/terapia , Receptores de Antígenos de Linfócitos T/genética , Adulto , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Imunoterapia , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Janus Quinase 1/genética , Janus Quinase 2/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Nivolumabe , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
10.
Sci Transl Med ; 9(403)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814544

RESUMO

Early detection and intervention are likely to be the most effective means for reducing morbidity and mortality of human cancer. However, development of methods for noninvasive detection of early-stage tumors has remained a challenge. We have developed an approach called targeted error correction sequencing (TEC-Seq) that allows ultrasensitive direct evaluation of sequence changes in circulating cell-free DNA using massively parallel sequencing. We have used this approach to examine 58 cancer-related genes encompassing 81 kb. Analysis of plasma from 44 healthy individuals identified genomic changes related to clonal hematopoiesis in 16% of asymptomatic individuals but no alterations in driver genes related to solid cancers. Evaluation of 200 patients with colorectal, breast, lung, or ovarian cancer detected somatic mutations in the plasma of 71, 59, 59, and 68%, respectively, of patients with stage I or II disease. Analyses of mutations in the circulation revealed high concordance with alterations in the tumors of these patients. In patients with resectable colorectal cancers, higher amounts of preoperative circulating tumor DNA were associated with disease recurrence and decreased overall survival. These analyses provide a broadly applicable approach for noninvasive detection of early-stage tumors that may be useful for screening and management of patients with cancer.


Assuntos
DNA Tumoral Circulante/metabolismo , Detecção Precoce de Câncer/métodos , Neoplasias/diagnóstico , Neoplasias/patologia , Células Sanguíneas/metabolismo , Estudos de Casos e Controles , Ácidos Nucleicos Livres/sangue , DNA Tumoral Circulante/sangue , Progressão da Doença , Feminino , Genes Neoplásicos , Humanos , Mutação/genética , Estadiamento de Neoplasias , Neoplasias/sangue , Neoplasias/genética , Cuidados Pré-Operatórios , Análise de Sequência de DNA , Resultado do Tratamento
11.
Nat Commun ; 6: 7686, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26154128

RESUMO

Pancreatic adenocarcinoma has the worst mortality of any solid cancer. In this study, to evaluate the clinical implications of genomic alterations in this tumour type, we perform whole-exome analyses of 24 tumours, targeted genomic analyses of 77 tumours, and use non-invasive approaches to examine tumour-specific mutations in the circulation of these patients. These analyses reveal somatic mutations in chromatin-regulating genes MLL, MLL2, MLL3 and ARID1A in 20% of patients that are associated with improved survival. We observe alterations in genes with potential therapeutic utility in over a third of cases. Liquid biopsy analyses demonstrate that 43% of patients with localized disease have detectable circulating tumour DNA (ctDNA) at diagnosis. Detection of ctDNA after resection predicts clinical relapse and poor outcome, with recurrence by ctDNA detected 6.5 months earlier than with CT imaging. These observations provide genetic predictors of outcome in pancreatic cancer and have implications for new avenues of therapeutic intervention.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Biomarcadores Tumorais , DNA/sangue , Genômica , Humanos , Valor Preditivo dos Testes , Recidiva , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA