Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 234(7): 11265-11275, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30499104

RESUMO

Non-small-cell lung cancer (NSCLC) accounts for the majority of the lung cancer cases that have become a leading cause of cancer deaths worldwide. Overexpression of transcription factor forkhead box M1 (FOXM1) is involved in the inauspicious development of several types of cancer, including lung tumor aggressiveness. Our laboratory has previously found that MED28, a Mediator subunit for transcriptional activation, modulates cell growth, epithelial-mesenchymal transition, migration, and invasion in human breast cancer cells. The objective of the current study is to investigate the potential role of MED28 and FOXM1 in NSCLC. In addition to A549 and PC9 cells, we also used a doxycycline-inducible system to generate FOXM1-overexpressed A549-DN cells, and we explored the connection of MED28 with FOXM1 and their effect on migration. Herein, we report that the increased expression levels of both MED28 and FOXM1 elevated the expression of matrix metalloproteinase 2 (MMP2), a metastasis marker, which enhanced cell migration and matrigel invasion of NSCLC cells. Furthermore, MED28 interacted with FOXM1, and both exhibited a mutual effect on the expression and subcellular localization. Moreover, MED28 small interfering RNA-mediated MMP2 gene suppression could be attenuated by inducible expression of a constitutively active form of FOXM1, which consequently restored the migration and invasion ability of NSCLC cells. Our data indicate that MED28 interacts with FOXM1, and each affects the expression and localization of the other, and, more importantly, both regulate MMP2-dependent migration and invasion in human lung cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína Forkhead Box M1/metabolismo , Neoplasias Pulmonares/patologia , Metaloproteinase 2 da Matriz/metabolismo , Complexo Mediador/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Complexo Mediador/genética , Invasividade Neoplásica/genética , Interferência de RNA , RNA Interferente Pequeno/genética
2.
J Cell Physiol ; 232(6): 1337-1345, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27662245

RESUMO

MED28, a mammalian Mediator subunit, was found highly expressed in several types of malignancy, including breast cancer. Recently, we have identified a role of MED28 in regulating both cell growth and migration in human breast cancer cells. In epithelium-derived solid tumor, migration and invasion are preceded by the progression of epithelial-mesenchymal transition (EMT) which calls for downregulation of epithelial markers as well as upregulation of mesenchymal markers, among other features. The objective of this study was to investigate a putative role of MED28 in the progression of EMT in human breast cancer cells. In fibroblast-like MDA-MB-231 cells, suppression of MED28 attenuated the mesenchymal morphology, concomitantly with a reduction of several mesenchymal biomarkers and Snail, a transcriptional repressor of E-cadherin. The suppression effect was also accompanied by downregulation of p-NFκB/p65. However, overexpression of MED28 exhibited in an opposite manner. In epithelial MCF7 cells, administration of Adriamycin®, an experimental EMT induction system, led to a mesenchyme-like appearance correlated with increased expression of MED28, p-p65, and Snail, and a reciprocal change of epithelial and mesenchymal markers. Furthermore, suppression of MED28 attenuated the experimental EMT effect and restored the original expression status of E-cadherin and MMP9 in MCF7 cells. Our data indicate that MED28 modulates the development of EMT through NFκB in human breast cancer cells, further reinforcing the significance of MED28 in the progression of breast cancer on top of its role in cell growth and migration. J. Cell. Physiol. 232: 1337-1345, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Complexo Mediador/metabolismo , NF-kappa B/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Modelos Biológicos , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail/metabolismo
3.
J Cell Physiol ; 231(8): 1796-803, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26660958

RESUMO

Vitamin A is required for normal body function, including vision, epithelial integrity, growth, and differentiation. All trans-retinoic acid (ATRA), a family member of vitamin A, has been explored in treating acute promyelocytic leukemia and other types of cancer. Dysregulated Wnt/ß-catenin signaling and disrupted cadherin-catenin complex often contribute to colorectal malignancy. MED28, a mammalian Mediator subunit, is found highly expressed in breast and colorectal cancers. Our laboratory has also reported that MED28 regulates cell growth, migration, and invasion in human breast cancer cells. In the current study we investigated the effect of ATRA on MED28 and Wnt/ß-catenin signaling in colorectal cancer. HCT116, HT29, SW480, and SW620, four human colorectal cancer cell lines representing different stages of carcinogenesis and harboring critical genetic changes, were employed. Our data indicated that regardless of genetic variations among these cells, suppression of MED28 reduced the expression of cyclin D1, c-Myc, and nuclear ß-catenin, but increased the expression of E-cadherin and HMG box-containing protein 1 (HBP1) where HBP1 has been described as a negative regulator of the Wnt/ß-catenin signaling. The reporter activity of an HBP1 promoter increased upon MED28 knockdown, but decreased upon MED28 overexpression. ATRA reduced the expression of MED28 and mimicked the effect of MED28 suppression in down-regulating Wnt/ß-catenin signaling. Taken together, ATRA can reverse the suppressive effect of MED28 on HBP1 and E-cadherin and inactivate the Wnt/ß-catenin pathway in colorectal cancer, suggesting a protective effect of ATRA against colorectal cancer. J. Cell. Physiol. 231: 1796-1803, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Grupo de Alta Mobilidade/metabolismo , Complexo Mediador/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , beta Catenina/metabolismo , Antígenos CD , Caderinas/genética , Caderinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Complexo Mediador/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Proteínas Repressoras/genética , Transfecção , beta Catenina/genética
4.
J Cell Physiol ; 227(12): 3820-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22495818

RESUMO

MED28, a mammalian Mediator subunit, exhibits several cellular roles, including a merlin, Grb2, and cytoskeleton-associated protein (magicin), a repressor of smooth muscle cell differentiation, and an endothelial-derived gene (EG-1). Overexpression of MED28 may stimulate cell proliferation which presumably results from the transcriptional activation of the Mediator function. Additionally, several tumors, including breast cancer, highly express MED28. We have found recently that MED28 potentiated epidermal growth factor (EGF)-induced migration in human breast cancer cells. Therefore, the objective of this study is to identify the role of MED28 in the aspect of cellular migration and invasion in human breast cancer cells. Suppression of MED28 blocked cellular migration and invasion with concomitant reduced expression levels of matrix metalloproteinase-2 (MMP2) and mitogen-activated protein kinase kinase 1 (MAP2K1; MEK1); overexpression of MED28 enhanced cellular migration and upregulated MMP2 and MEK1 expression. Moreover, suppression of MEK1, by dominant-negative, kinase-dead MEK1 cDNA construct or MEK1-specific small interfering RNA (siRNA) as well as MEK1 inhibitors, blocked MED28-induced MMP2 activation, cellular migration, and invasion in breast cancer cells. Furthermore, ectopic expression of MEK1 rescued the inhibitory effect of MED28 knockdown on invasion, and exogenous MMP2 recombinant protein recovered the suppression on invasion upon MED28 or MEK1 knockdown. Our data indicate that MED28 regulates cellular migration in a MEK1-dependent manner in human breast cancer cells, reinforcing the important cellular roles of MED28.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , MAP Quinase Quinase 1/metabolismo , Complexo Mediador/metabolismo , Linhagem Celular Tumoral , DNA Complementar , Feminino , Técnicas de Silenciamento de Genes , Humanos , MAP Quinase Quinase 1/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Complexo Mediador/genética , Invasividade Neoplásica
5.
Biomed Res Int ; 2022: 2268818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072467

RESUMO

Inadequate vitamin D status may increase the risk of developing multiple types of cancer. Epidemiological studies suggest an inverse association between 25-hydroxyvitamin D3 (25(OH)D3) and malignancy, including colorectal cancer. Previous studies have suggested that MED28, a Mediator subunit involved in transcriptional regulation, is associated with the growth of colorectal cancer cells; however, its role in the progression of metastasis such as epithelial-mesenchymal transition (EMT) and cell migration of colorectal cancer is unclear at present. The aim of this study was to investigate a potentially suppressive effect of calcitriol, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), a bioactive form of vitamin D, and the role of MED28 in the progression of EMT in human colorectal cancer cells. Suppression of MED28 increased the expression of E-cadherin and reduced the expression of several mesenchymal and migration biomarkers and Wnt/ß-catenin signaling molecules, whereas overexpression of MED28 enhanced the EMT features. Calcitriol suppressed the expression of MED28, and the effect of calcitriol mirrored that of MED28 silencing. Our data indicate that calcitriol attenuated MED28-mediated cell growth and EMT in human colorectal cancer cells, underlining the significance of MED28 in the progression of colorectal cancer and supporting the potential translational application of calcitriol.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Complexo Mediador , Vitamina D , Calcitriol/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Complexo Mediador/genética , Vitamina D/farmacologia , Vitaminas/farmacologia
6.
Life (Basel) ; 11(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34575112

RESUMO

Increasing lines of evidence indicate that the biologically active form of vitamin D, calcitriol (1,25-dihydroxyvitamin D3), prevents cancer progression by reducing cell proliferation, increasing cell differentiation, and inhibiting angiogenesis, among other potential roles. Cancer cells in solid tumors preferably undergo the "Warburg effect" to support cell growth by upregulating glycolysis, and the glycolytic intermediates further serve as building blocks to generate biomass. The objective of the current study is to investigate whether calcitriol affects glucose metabolism and cell growth in human colorectal cancer cells. Calcitriol reduced the expression of cyclin D1 and c-Myc. In addition, calcitriol reduced the expression of glucose transporter 1 (GLUT1) and key glycolytic enzymes and decreased extracellular acidification rate but increased oxygen consumption rate in human colorectal cancer cells. In a subcutaneous HT29 xenograft NOD/SCID mouse model, the volume and weight of the tumors were smaller in the calcitriol groups as compared with the control group, and the expression levels of GLUT1 and glycolytic enzymes, hexokinase 2 and lactate dehydrogenase A, were also lower in the calcitriol groups in a dose-responsive manner. Our data indicate that calcitriol suppresses glycolysis and cell growth in human colorectal cancer cells, suggesting an inhibitory role of the biologically active form of vitamin D in colorectal cancer progression.

7.
Life (Basel) ; 11(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073762

RESUMO

Volvariella volvacea, also known as straw mushroom, is a common edible mushroom in Chinese cuisine. It contains many nutrients for human health. A fungal immunomodulatory protein (FIP) has been isolated from V. volvacea and named FIP-vvo. Although the regulatory effects of many FIPs on immunity have been identified, the impact of FIP-vvo in modulating dendritic cells (DCs), which play a key role to connect the innate and the adaptive immunity, is not known. In this study, we aim to study the effect of FIP-vvo on the DC maturation and function. We found that FIP-vvo slightly increased the generation of CD11c+ bone marrow-derived DC (BMDC). In addition, the surface expression of MHCII was promoted in BMDCs after the treatment of FIP-vvo, suggesting that FIP-vvo induces DC maturation. Furthermore, FIP-vvo enhanced the ability of BMDCs to activate antigen-specific T cell responses in vitro. In the in vivo study, the FIP-vvo treatment facilitated T cell response in lymph nodes. Therefore, for the first time, our data demonstrated that FIP-vvo promoted DC maturation and function and suggested that FIP-vvo could have benefits for human health by enhancing immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA