Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(12): 6941-6957, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34161580

RESUMO

Programmed -1 ribosomal frameshifting is an essential regulation mechanism of translation in viruses and bacteria. It is stimulated by mRNA structures inside the coding region. As the structure is unfolded repeatedly by consecutive translating ribosomes, whether it can refold properly each time is important in performing its function. By using single-molecule approaches and molecular dynamics simulations, we found that a frameshift-stimulating RNA pseudoknot folds sequentially through its upstream stem S1 and downstream stem S2. In this pathway, S2 folds from the downstream side and tends to be trapped in intermediates. By masking the last few nucleotides to mimic their gradual emergence from translating ribosomes, S2 can be directed to fold from the upstream region. The results show that the intermediates are greatly suppressed, suggesting that mRNA refolding may be modulated by ribosomes. Moreover, masking the first few nucleotides of S1 favors the folding from S2 and yields native pseudoknots, which are stable enough to retrieve the masked nucleotides. We hypothesize that translating ribosomes can remodel an intermediate mRNA structure into a stable conformation, which may in turn stimulate backward slippage of the ribosome. This supports an interactive model of ribosomal frameshifting and gives an insightful account addressing previous experimental observations.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Dobramento de RNA , RNA Mensageiro/química , Sequência de Bases , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Pinças Ópticas , Ribossomos/metabolismo
2.
J Fungi (Basel) ; 8(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35330235

RESUMO

We have previously identified Candida albicans GPH1 (orf19.7021) whose protein product was associated with C. albicans Cdc4. The GPH1 gene is a putative glycogen phosphorylase because its Saccharomyces cerevisiae homolog participates in glycogen catabolism, which involves the synthesis of ß-glucan of the fungal cell wall. We made a strain whose CaCDC4 expression is repressed, and GPH1 is constitutively expressed. We established a GPH1 null mutant strain and used it to conduct the in vitro virulence assays that detect cell wall function. The in vitro virulence assay is centered on biofilm formation in which analytic procedures are implemented to evaluate cell surface hydrophobicity; competence, either in stress resistance, germ tube formation, or fibronection association; and the XTT-based adhesion and biofilm formation. We showed that the constitutively expressed GPH1 partially suppresses filamentation when the CaCDC4 expression is repressed. The C. albicans Gph1 protein is reduced in the presence of CaCdc4 in comparison with the absence of CaCdc4. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant displayed a reduction in the capability to form germ tubes and the cell surface hydrophobicity but an increase in binding with fibronectin. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant showed a rise in adhesion, the initial stage of biofilm formation, but displayed a similar capacity to form a mature biofilm. There was no major impact on the gph1Δ/gph1Δ mutant regarding the conditions of cell wall damaging and TOR pathway-associated nutrient depletion. We conclude that GPH1, adversely regulated by the filament suppressor CDC4, contributes to cell wall function in C. albicans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA