Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37998872

RESUMO

The Zizania latifolia is usually infected by the obligate parasitic fungus Ustilago esculenta to form an edible fleshy stem which is an aquatic vegetable called Jiaobai in China. The infection by the teliospore (T) strain of U. esculenta induces Z. latifolia forming gray fleshy stems, while the mycelia-teliospore (MT) strain of U. esculenta induces white fleshy stems which are more suitable for edibility than gray fleshy stems. The mechanism of this phenomenon is still largely unknown. One of the possible causes is the diversity of endophytic microbial communities between these two fleshy stems. Therefore, we utilized fungal ITS1 and bacterial 16S rDNA amplicon sequencing to investigate the diversity of endophytic microbial communities in the two different fleshy stems of Z. latifolia. The results revealed that the α diversity and richness of endophytic fungi in white Z. latifolia were significantly greater than in gray Z. latifolia. The dominant fungal genus in both fleshy stems was U. esculenta, which accounted for over 90% of the endophytic fungi. The community composition of endophytic fungi in gray and white Z. latifolia was different except for U. esculenta, and a negative correlation was observed between U. esculenta and other endophytic fungi. In addition, the dominant bacterial genus in gray Z. latifolia was Alcaligenaceae which is also negatively correlated with other bacterium communities. Additionally, the co-occurrence network of white Z. latifolia was found to have a stronger scale, connectivity, and complexity compared to that of gray Z. latifolia. And the detected beneficial bacteria and pathogens in the stems of Z. latifolia potentially compete for resources. Furthermore, the function of endophytic bacteria is more abundant than endophytic fungi in Z. latifolia. This research investigated the correlation between the development of Z. latifolia fleshy stems and endophytic microbial communities. Our findings indicate that the composition of endophytic microbial communities is closely related to the type of Z. latifolia fleshy stems. This research also suggests the potential utilization of specific microbial communities to enhance the growth and development of Z. latifolia, thereby contributing to the breeding of Z. latifolia.

2.
Front Bioeng Biotechnol ; 10: 1033991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324899

RESUMO

Rhizosphere-associated microbes have important implications for plant health, but knowledge of the association between the pathological conditions of soil-borne virus-infected wheat and soil microbial communities, especially changes in fungal communities, remains limited. We investigated the succession of fungal communities from bulk soil to wheat rhizosphere soil in both infected and healthy plants using amplicon sequencing methods, and assessed their potential role in plant health. The results showed that the diversity of fungi in wheat rhizosphere and bulk soils significantly differed post wheat yellow mosaic virus disease onset. The structure differences in fungal community at the two wheat health states or two compartment niches were evident, soil physicochemical properties (i.e., NH4 +) contribute to differences in fungal community structure and alpha diversity. Comparison analysis showed Mortierellomycetes and Dothideomycetes as dominant communities in healthy wheat soils at class level. The genus Pyronemataceae and Solicoccozyma were significantly are significantly enriched in rhizosphere soil of diseased plant, the genus Cystofilobasidium, Cladosporium, Mortierella, and Stephanonectria are significantly enriched in bulk soil of healthy plant. Co-occurrence network analysis showed that the fungi in healthy wheat soil has higher mutual benefit and connectivity compared with diseased wheat. The results of this study demonstrated that the occurrence of wheat yellow mosaic virus diseases altered both fungal community diversity and composition, and that NH4 + is the most important soil physicochemical factor influencing fungal diversity and community composition.

3.
Biology (Basel) ; 10(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802832

RESUMO

Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA