Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 152(5): 585-601, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31709534

RESUMO

The goal of this study was to determine if subunit displacement and/or alterations in proteasome biosynthesis could explain the changes observed in the levels of constitutive proteasomes (c-20S) and immunoproteasomes (i-20S) in the spinal cords of mice with experimental autoimmune encephalomyelitis (EAE). To this end, EAE was induced in C57BL/6 mice by immunization with MOG35-55 peptide. Spinal cords were collected at different times during the disease course and used for western blotting, RNA analysis, and immunohistochemistry. The results show that, as expression of i-20S and the activator PA28 rise in EAE, there is a concomitant decline in that of c-20S at the mRNA and protein level. These changes are observed in neurons and astrocytes but not in oligodendrocytes. The increased amounts of the i-20S-specific subunit ß5i and PA28α/ß in EAE correlate with the levels of interferon-γ and its downstream effectors p-signal transducer and activator of transcription 1 and interferon regulatory factor-1, but not with those of nuclear factor kappa-light-chain-enhancer of activated B cells. This suggests that the signal transducer and activator of transcription 1/interferon regulatory factor-1 pathway is solely responsible for the induction of these subunits. The decrease in the mRNA and protein levels corresponding to the c-20S-specific subunit ß5 may also be due to reduced expression of the nuclear factor (erythroid-derived 2)-like-1 (Nrf1 or Nfe2l1), specifically Nrf1α and Nrf1ß. Low Nfe2l1 mRNA expression is unlikely caused by reduced mammalian target of rapamycin signaling but could be the result of diminished pre-B-cell leukemia homeobox-1 transcription factor levels. Together, these findings suggest that a combination of subunit displacement and reduced Nrf1 expression may be responsible for c-20S impairment in EAE. The present work provides insights into the dynamics of proteasome expression in the CNS of EAE mice and is the first to explore Nrf1 signaling in an inflammatory demyelinating disorder.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Medula Espinal/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
2.
Neurochem Res ; 45(4): 860-871, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31939090

RESUMO

In this study, we investigated if subunit displacement and/or alterations in proteasome biosynthesis are responsible for the changes in the levels of constitutive proteasomes (c-20S), immunoproteasomes (i-20S) and the activators PA28 and PA700 in neurons and astrocytes cultured with a cytokine mixture (IFN-γ/TNF-α/IL-1ß). Exposure of both cell types to cytokines for 24 h increases mRNA and protein expression of the i-20S-specific subunit ß5i and PA28α/ß, and leads to a decline in the amount of the c-20S-specific subunit ß5. Since ß5 mRNA levels are unchanged by the cytokine treatment, it is fair to conclude that displacement of constitutive ß-subunits with inducible ß5i subunits is likely the mechanism underlying the decrease in c-20S. As expected, the increase in the amount of the IFN-γ-inducible subunits coincides with elevated expression of phospho-STAT-1 and interferon regulatory factor-1 (IRF-1). However, inhibition of NF-κB signaling in cytokine-treated astrocytes reduces IRF-1 expression without affecting that of i-20S, c-20S and PA28. This suggests that STAT-1 is capable of increasing the transcription of i20S-specific subunits and PA28α/ß by itself. The lack of a decrease in proteasome ß5 mRNA expression is consistent with the fact that Nrf1 (Nfe2l1) and Nrf2 (Nfe2l2) levels are not reduced by pro-inflammatory cytokines. In contrast, we previously found that there is a significant Nrf1 dysregulation and reduced ß5 mRNA expression in the spinal cords of mice with experimental autoimmune encephalomyelitis (EAE). Thus, there are stressors in EAE, other than a pro-inflammatory environment, that are not present in cytokine-treated cells.


Assuntos
Astrócitos/metabolismo , Citocinas/farmacologia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Animais , Linhagem Celular Tumoral , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Camundongos , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
3.
J Neurochem ; 148(3): 426-439, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30289974

RESUMO

Glutathione peroxidase 4 (GPx4) is the only enzyme capable of reducing toxic lipid hydroperoxides in biological membranes to the corresponding alcohols using glutathione as the electron donor. GPx4 is the major inhibitor of ferroptosis, a non-apoptotic and iron-dependent programmed cell death pathway, which has been shown to occur in various neurological disorders with severe oxidative stress. In this study, we investigate whether GPx4 expression is altered in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). The results clearly show that mRNA expression for all three GPx4 isoforms (cytoplasmic, mitochondrial and nuclear) decline in multiple sclerosis gray matter and in the spinal cord of MOG35-55 peptide-induced EAE. The amount of GPx4 protein is also reduced in EAE, albeit not in all cells. Neuronal GPx4 immunostaining, mostly cytoplasmic, is lower in EAE spinal cords than in control spinal cords, while oligodendrocyte GPx4 immunostaining, mainly nuclear, is unaltered. Neither control nor EAE astrocytes and microglia cells show GPx4 labeling. In addition to GPx4, two other negative modulators of ferroptosis (γ-glutamylcysteine ligase and cysteine/glutamate antiporter), which are critical to maintain physiological levels of glutathione, are diminished in EAE. The decrease in the ability to eliminate hydroperoxides was also evidenced by the accumulation of lipid peroxidation products and the reduction in the proportion of the docosahexaenoic acid in non-myelin lipids. These findings, along with presence of abnormal neuronal mitochondria morphology, which includes an irregular matrix, disrupted outer membrane and reduced/absent cristae, are consistent with the occurrence of ferroptotic damage in inflammatory demyelinating disorders.


Assuntos
Encéfalo/enzimologia , Encefalomielite Autoimune Experimental/enzimologia , Glutationa Peroxidase/metabolismo , Esclerose Múltipla/enzimologia , Medula Espinal/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Morte Celular , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Esclerose Múltipla/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Medula Espinal/patologia
4.
Neurochem Res ; 43(12): 2277-2287, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30251207

RESUMO

The present study was designed to investigate the role of calpain and the proteasome in the removal of oxidized neuronal cytoskeletal proteins in myelin basic protein-induced experimental autoimmune encephalomyelitis (EAE). To this end, EAE rats received a single intrathecal injection of calpeptin or epoxomicin at the first sign of clinical disease. Forty-eight hours later, animals were sacrificed and lumbar spinal cord segments were dissected and used for biochemical analyses. The results show that calpain and proteasome activity is specifically, but partially, inhibited with calpeptin and epoxomicin, respectively. Calpain inhibition causes an increase in total protein carbonylation and in the amount of neurofilament proteins (NFPs), ß-tubulin and ß-actin that were spared from degradation, but no changes are seen in the oxidation of any of three NFPs. By contrast, proteasome inhibition has no effect on total protein carbonylation or cytoskeletal protein degradation but increases the amount of oxidized NFH and NFM. These results suggest that while the proteasome may contribute to removal of oxidized NFPs, calpain is the main protease involved in degradation of neuronal cytoskeleton and does not preferentially targets oxidized NFPs species in acute EAE. Different results were obtained in a cell-free system, where calpain inhibition rises the amount of oxidized NFH, and proteasome inhibition fails to change the oxidation state of the NFPs. The later finding suggests that the preferential degradation of oxidized NFH and NFM in vivo by the proteasome occurs via the 26S and not the 20S particle.


Assuntos
Calpaína/fisiologia , Citoesqueleto/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Carbonilação Proteica/fisiologia , Proteólise , Animais , Calpaína/antagonistas & inibidores , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/patologia , Dipeptídeos/administração & dosagem , Encefalomielite Autoimune Experimental/patologia , Injeções Espinhais , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Oligopeptídeos/administração & dosagem , Carbonilação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew
5.
Neurochem Res ; 43(3): 609-618, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29264677

RESUMO

This study was conducted to further our understanding about the link between lipid peroxidation and protein carbonylation in rat brain slices incubated with the glutathione (GSH)-depletor diethyl maleate. Using this in vitro system of oxidative stress, we found that there is a significant lag between the appearance of carbonylated proteins and GSH depletion, which seems to be due to the removal of oxidized species early on in the incubation by the mitochondrial Lon protease. Upon acute GSH depletion, protein carbonyls accumulated mostly in mitochondria and to a lesser degree in other subcellular fractions that also contain high levels of polyunsaturated lipids. This result is consistent with our previous findings suggesting that lipid hydroperoxides mediate the oxidation of proteins in this system. However, these lipid hydroperoxides are not produced by oxidation of free arachidonic acid or other polyunsaturated free fatty acids by lipooxygenases or cyclooxygenases. Finally, γ-glutamyl semialdehyde and 2-amino-adipic semialdehyde were identified by HPLC as the carbonyl-containing amino acid residues, indicating that proteins are carbonylated by metal ion-catalyzed oxidation of lysine, arginine and proline residues. The present findings are important in the context of neurological disorders that exhibit increased lipid peroxidation and protein carbonylation, such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.


Assuntos
Encéfalo/metabolismo , Glutationa/deficiência , Peroxidação de Lipídeos/fisiologia , Carbonilação Proteica/fisiologia , Animais , Glutationa/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Ratos Sprague-Dawley , Frações Subcelulares/metabolismo
6.
J Neurochem ; 139(4): 640-650, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27579494

RESUMO

This study investigates the possible mechanism(s) underlying glutathione (GSH) deficiency in the mouse spinal cord during the course of myelin oligodendrocyte glycoprotein35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of multiple sclerosis. Using the classical enzymatic recycling method and a newly developed immunodot assay, we first demonstrated that total GSH levels (i.e. free GSH plus all its adducts) are reduced in EAE, suggesting an impaired synthesis. The decline in the levels of this essential antioxidant tripeptide in EAE coincides temporally and in magnitude with a reduction in the amount of γ-glutamylcysteine ligase, the rate-limiting enzyme in GSH synthesis. Other enzymes involved in GSH biosynthesis, whose genes also contain antioxidant-response elements, including glutathione synthetase, cystine/glutamate antiporter, and γ-glutamyl transpeptidase (γ-GT) are diminished in EAE as well. Low levels of γ-glutamylcysteine ligase, glutathione synthetase, and γ-GT are the consequence of reduced mRNA expression, which correlates with diminished expression of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in both the cytosol and nucleus. Interestingly, the low Nrf2 expression does not seem to be caused by increased degradation via Kelch-like ECH-associated protein 1-dependent or Kelch-like ECH-associated protein 1-independent mechanisms (such as glycogen synthetase kinase-3ß activation), or by reduced levels of Nrf2 mRNA. This suggests that translation of this important transcription factor and/or other still unidentified post-translational processes are altered in EAE. These novel findings are central toward understanding how critical antioxidant and protective responses are lost in inflammatory demyelinating disorders.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Glutationa/deficiência , Fator 2 Relacionado a NF-E2/biossíntese , RNA Mensageiro/biossíntese , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/metabolismo , Medula Espinal/patologia
7.
Circulation ; 127(16): 1692-701, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23536361

RESUMO

BACKGROUND: For reasons that remain unclear, whether type 5 adenylyl cyclase (AC5), 1 of 2 major AC isoforms in heart, is protective or deleterious in response to cardiac stress is controversial. To reconcile this controversy we examined the cardiomyopathy induced by chronic isoproterenol in AC5 transgenic (Tg) mice and the signaling mechanisms involved. METHODS AND RESULTS: Chronic isoproterenol increased oxidative stress and induced more severe cardiomyopathy in AC5 Tg, as left ventricular ejection fraction fell 1.9-fold more than wild type, along with greater left ventricular dilation and increased fibrosis, apoptosis, and hypertrophy. Oxidative stress induced by chronic isoproterenol, detected by 8-OhDG was 15% greater, P=0.007, in AC5 Tg hearts, whereas protein expression of manganese superoxide dismutase (MnSOD) was reduced by 38%, indicating that the susceptibility of AC5 Tg to cardiomyopathy may be attributable to decreased MnSOD expression. Consistent with this, susceptibility of the AC5 Tg to cardiomyopathy was suppressed by overexpression of MnSOD, whereas protection afforded by the AC5 knockout (KO) was lost in AC5 KO×MnSOD heterozyous KO mice. Elevation of MnSOD was eliminated by both sirtuin and MEK inhibitors, suggesting both the SIRT1/FoxO3a and MEK/ERK pathway are involved in MnSOD regulation by AC5. CONCLUSIONS: Overexpression of AC5 exacerbates the cardiomyopathy induced by chronic catecholamine stress by altering regulation of SIRT1/FoxO3a, MEK/ERK, and MnSOD, resulting in oxidative stress intolerance, thereby shedding light on new approaches for treatment of heart failure.


Assuntos
Adenilil Ciclases/fisiologia , Cardiomiopatias/fisiopatologia , Fatores de Transcrição Forkhead/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Estresse Oxidativo/fisiologia , Sirtuína 1/fisiologia , Superóxido Dismutase/fisiologia , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Animais , Cardiomiopatias/induzido quimicamente , Cruzamentos Genéticos , Óxidos N-Cíclicos/uso terapêutico , Indução Enzimática/fisiologia , Proteína Forkhead Box O3 , Isoproterenol/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Estresse Oxidativo/genética , Inibidores de Proteínas Quinases/farmacologia , Sirtuína 1/antagonistas & inibidores , Marcadores de Spin , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Transcrição Gênica
8.
Toxicol Sci ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745431

RESUMO

The ubiquitous existence of microplastics and nanoplastics raises concerns about their potential impact on the human reproductive system. Limited data exists on microplastics within the human reproductive system and their potential consequences on sperm quality. Our objectives were to quantify and characterize the prevalence and composition of microplastics within both canine and human testes and investigate potential associations with the sperm count, and weights of testis and epididymis. Using advanced sensitive Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS), we quantified 12 types of microplastics within 47 canine and 23 human testes. Data on reproductive organ weights, and sperm count in dogs were collected. Statistical analyses, including descriptive analysis, correlational analysis, and multivariate linear regression analyses were applied to investigate the association of microplastics with reproductive functions. Our study revealed the presence of microplastics in all canine and human testes, with significant inter-individual variability. Mean total microplastic levels were 122.63 µg/g in dogs and 328.44 µg/g in humans. Both humans and canines exhibit relatively similar proportions of the major polymer types, with PE being dominant. Furthermore, a negative correlation between specific polymers such as PVC and PET and the normalized weight of the testis was observed. These findings highlight the pervasive presence of microplastics in the male reproductive system in both canine and human testes, with potential consequences on male fertility.

9.
Toxicol Sci ; 192(1): 43-58, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36625514

RESUMO

The goal of this study is to examine bisphenol AF (BPAF)-induced multinucleation (MNC) in comparison with dibutyl phthalate (DBP), known to induce MNC in mouse gonocytes in vivo. We performed image-based single-cell high content analysis (HCA) in the mouse spermatogonia C18-4 cells treated with various concentrations of BPAF and DBP. BPAF as low as 5 µM was cytotoxic and resulted in 40% cell death of the C18-4 cells after 72 h. HCA revealed that 5 µM of BPAF significantly increased the number of MNC by an average of 3.6-fold. DBP did not induce MNC in the doses we tested. Cytokinesis is tightly regulated by various small GTPase-signaling pathways. We, therefore, tested 5 selective GTPase inhibitors and found that Y27632, a ROCK inhibitor, reduced the BPAF-induced MNC by nearly 30%. Inhibition of Cdc42 by ML141 conversely increased the number of BPAF-induced MNC. We performed a hierarchical cluster analysis of the HCA data and demonstrated that the cytoskeletal disruption by BPAF was reversely modified by Y27632. We found that mRNA expression of genes regulating Rho and Rac GTPase activities, p190RhoGap and MgcRacGap, was altered in BPAF-treated C18-4 cells in a time-dependent manner. Multinucleated gonocytes are often indicators of disease pathologies. Our results provided the first evidence of mechanisms of the dual toxicity by BPAF to male germ cells, which induces chromosome endoreplication without the coordinated cytokinetic cellular components. The unique genotoxic mechanism of forming multinucleated germ cells suggests a novel mode of action in the male repro-toxicity concern over the increasingly ubiquitous presence of BPA analogs.


Assuntos
Dibutilftalato , Proteínas Monoméricas de Ligação ao GTP , Masculino , Camundongos , Animais , Dibutilftalato/toxicidade , Espermatogônias , Compostos Benzidrílicos/toxicidade
10.
Toxicol In Vitro ; 89: 105589, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958674

RESUMO

Bisphenol A is an endocrine disruptor that has been shown to have testicular toxicity in animal models. Its structural analog, including bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) have been introduced to the market as BPA alternatives. Previously, we developed high-content analysis (HCA) assays and applied machine learning to compare the testicular toxicity of BPA and its analogs in spermatogonial cells and testicular cell co-culture models. There are diverse cell populations in the testis to support spermatogenesis, but their cell type-specific toxicities are still not clear. The purpose of this study is to examine the selective toxicity of BPA, BPS), BPAF, and TBBPA on these testicular cells, including Sertoli cells, Leydig cells, and spermatogonia cells. We developed a high-content image-based single-cell analysis and measured a broad spectrum of adverse endpoints related to the development of reproductive toxicology, including cell number, nuclear morphology, DNA synthesis, cell cycle progression, early DNA damage response, cytoskeleton structure, DNA methylation status, and autophagy. We introduced an HCA index and spectrum to reveal multiple HCA parameters and observed distinct toxicity profiling of BPA and its analogs among three testicular types. The HCA spectrum shows the dynamic, chemical-specific, dose-dependent changes of each HCA parameter. Each chemical displayed a unique dose-dependent profile within each type of cell. All three types of cells showed the highest response to BPAF at 10 µM across all endpoints measured. BPAF targeted spermatogonial cell (C18) more significantly at 5 µM. BPS more likely targeted Sertoli cell (TM4) and Leydig cell (TM3) and less at spermatogonia cells. TBBPA targeted spermatogonia, Sertoli cells, and less at TM3 cells. BPA is mainly targeted at TM4, followed by TM3 cells, and less at spermatogonial cells. Most importantly, we observed that BPAF induced a dose-dependent increase in spermatogonia cells, not in Sertoli and Leydig cells. In summary, our current HCA assays revealed the cell-type-specific toxicities of BPA and its analogs in different testicular cells. Multinucleation induced by BPAF, along with increased DNA damage and synthesis at low doses, could possibly have a profound long-term effect on reproductive systems.


Assuntos
Células Intersticiais do Testículo , Testículo , Masculino , Animais , Camundongos , Espermatogônias , Células de Sertoli , Compostos Benzidrílicos/metabolismo , Fenótipo , DNA/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37848612

RESUMO

BACKGROUND: Understanding lung deposition dose of black carbon is critical to fully reconcile epidemiological evidence of combustion particles induced health effects and inform the development of air quality metrics concerning black carbon. Macrophage carbon load (MaCL) is a novel cytology method that quantifies lung deposition dose of black carbon, however it has limited feasibility in large-scale epidemiological study due to the labor-intensive manual counting. OBJECTIVE: To assess the association between MaCL and episodic elevation of combustion particles; to develop artificial intelligence based counting algorithm for MaCL assay. METHODS: Sputum slides were collected during episodic elevation of ambient PM2.5 (n = 49, daily PM2.5 > 10 µg/m3 for over 2 weeks due to wildfire smoke intrusion in summer and local wood burning in winter) and low PM2.5 period (n = 39, 30-day average PM2.5 < 4 µg/m3) from the Lovelace Smokers cohort. RESULTS: Over 98% individual carbon particles in macrophages had diameter <1 µm. MaCL levels scored manually were highly responsive to episodic elevation of ambient PM2.5 and also correlated with lung injury biomarker, plasma CC16. The association with CC16 became more robust when the assessment focused on macrophages with higher carbon load. A Machine-Learning algorithm for Engulfed cArbon Particles (MacLEAP) was developed based on the Mask Region-based Convolutional Neural Network. MacLEAP algorithm yielded excellent correlations with manual counting for number and area of the particles. The algorithm produced associations with ambient PM2.5 and plasma CC16 that were nearly identical in magnitude to those obtained through manual counting. IMPACT STATEMENT: Understanding lung black carbon deposition is crucial for comprehending health effects of combustion particles. We developed "Machine-Learning algorithm for Engulfed cArbon Particles (MacLEAP)", the first artificial intelligence algorithm for quantifying airway macrophage black carbon. Our study bolstered the algorithm with more training images and its first use in air pollution epidemiology. We revealed macrophage carbon load as a sensitive biomarker for heightened ambient combustion particles due to wildfires and residential wood burning.

12.
Sci Transl Med ; 12(528)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996464

RESUMO

Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERß, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Obesidade/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Tecido Adiposo/patologia , Adiposidade/efeitos dos fármacos , Animais , Respiração Celular , Modelos Animais de Doenças , Metabolismo Energético , Estrogênios/deficiência , Feminino , Genes Mitocondriais , Glucose/metabolismo , Homeostase , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Obesidade/complicações , Ovariectomia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Resultado do Tratamento , Regulação para Cima , Aumento de Peso
13.
Am J Physiol Heart Circ Physiol ; 297(5): H1776-82, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19734365

RESUMO

Adenylyl cyclase (AC) types 5 and 6 (AC5 and AC6) are the two major AC isoforms expressed in the mammalian heart that mediate signals from beta-adrenergic receptor stimulation. Because of the unavailability of isoform-specific antibodies, it is difficult to ascertain the expression levels of AC5 protein in the heart. Here we demonstrated the successful generation of an AC5 isoform-specific mouse monoclonal antibody and studied the expression of AC5 protein during cardiac development in different mammalian species. The specificity of the antibody was confirmed using heart and brain tissues from AC5 knockout mice and from transgenic mice overexpressing AC5. In mice, the AC5 protein was highest in the brain but was also detectable in all organs studied, including the heart, brain, lung, liver, stomach, kidney, skeletal muscle, and vascular tissues. Western blot analysis showed that AC5 was most abundant in the neonatal heart and declined to basal levels in the adult heart. AC5 protein increased in the heart with pressure-overload left ventricular hypertrophy. Thus this new AC5 antibody demonstrated that this AC isoform behaves similarly to fetal type genes, such as atrial natriuretic peptide; i.e., it declines with development and increases with pressure-overload hypertrophy.


Assuntos
Adenilil Ciclases/metabolismo , Coração/crescimento & desenvolvimento , Hipertrofia Ventricular Esquerda/enzimologia , Isoenzimas/metabolismo , Miocárdio/enzimologia , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Adenilil Ciclases/imunologia , Fatores Etários , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais , Especificidade de Anticorpos , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Cães , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Suínos , Transfecção
14.
Genesis ; 45(12): 744-56, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18064672

RESUMO

Attractin (ATRN) and Attractin-like 1 (ATRNL1) are highly similar type I transmembrane proteins. Atrn null mutant mice have a pleiotropic phenotype including dark fur, juvenile-onset spongiform neurodegeneration, hypomyelination, tremor, and reduced body weight and adiposity, implicating ATRN in numerous biological processes. Bioinformatic analysis indicated that Atrn and Atrnl1 arose from a common ancestral gene early in vertebrate evolution. To investigate the genetics of the ATRN system and explore potential redundancy between Atrn and Atrnl1, we generated and characterized Atrnl1 loss- and gain-of-function mutations in mice. Atrnl1 mutant mice were grossly normal with no alterations of pigmentation, central nervous system pathology or body weight. Atrn null mutant mice carrying a beta-actin promoter-driven Atrnl1 transgene had normal, agouti-banded hairs and significantly delayed onset of spongiform neurodegeneration, indicating that over-expression of ATRNL1 compensates for loss of ATRN. Thus, the two genes are redundant from the perspective of gain-of-function but not loss-of-function mutations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/classificação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Pigmentação/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Fenótipo , Filogenia
15.
Mol Endocrinol ; 18(2): 326-38, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14593075

RESUMO

Ovarian follicle development is dependent on growth factors that stimulate cell proliferation and act as survival factors to prevent apoptosis of follicle cells. We examined the mechanism of the protective effect of IGF-I against Fas ligand-induced apoptosis of granulosa cells and its relationship to cell proliferation. IGF-I activated both the phosphoinositide 3'-OH kinase (PI3K) and the MAPK pathways. Experiments using specific inhibitors of these pathways showed that protection by IGF-I was mediated by the PI3K pathway and not the MAPK pathway. Recombinant adenoviruses were used to test whether the downstream target of PI3K activation, Akt kinase, was required for protection against apoptosis. Expression of dominant negative Akt prevented protection by IGF-I whereas expression of constitutively active Akt (myrAkt) mimicked the effect of IGF-I. Treatment with IGF-I, or expression of myrAkt, increased progression from G(0)/G(1) to S phase of the cell cycle whereas expression of dominant negative Akt inhibited G(0)/G(1) to S phase progression and prevented the stimulatory effect of IGF-I. We tested whether cell cycle progression was required for protection from apoptosis using the cyclin-dependent kinase-2 inhibitor roscovitine, which blocks cells at the G(1)/S transition. Roscovitine prevented the protective effect of IGF-I and myrAkt expression against apoptosis. Therefore, activation of Akt is not sufficient to protect granulosa cells from apoptosis in the absence of cell cycle progression. In summary, IGF-I protects granulosa cells from apoptosis by activation of the PI3K/Akt pathway. This protective effect can occur only when progression from G(1) to S phase of the cell cycle regulated by the PI3K/Akt pathway is unperturbed.


Assuntos
Apoptose/fisiologia , Ciclo Celular/fisiologia , Células da Granulosa/citologia , Fator de Crescimento Insulin-Like I/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Bovinos , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteína Ligante Fas , Feminino , Células da Granulosa/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt , Purinas/farmacologia , Roscovitina , Transdução de Sinais , Receptor fas/efeitos dos fármacos , Receptor fas/metabolismo
16.
Mol Cancer Res ; 12(11): 1644-1654, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25030371

RESUMO

UNLABELLED: The role of 17ß-estradiol (E2) in breast cancer development and tumor growth has traditionally been attributed exclusively to the activation of estrogen receptor-α (ERα). Although targeted inhibition of ERα is a successful approach for patients with ERα(+) breast cancer, many patients fail to respond or become resistant to anti-estrogen therapy. The discovery of the G protein-coupled estrogen receptor (GPER) suggested an additional mechanism through which E2 could exert its effects in breast cancer. Studies have demonstrated clinical correlations between GPER expression in human breast tumor specimens and increased tumor size, distant metastasis, and recurrence, as well as established a proliferative role for GPER in vitro; however, direct in vivo evidence has been lacking. To this end, a GPER-null mutation [GPER knockout (KO)] was introduced, through interbreeding, into a widely used transgenic mouse model of mammary tumorigenesis [MMTV-PyMT (PyMT)]. Early tumor development, assessed by the extent of hyperplasia and proliferation, was not different between GPER wild-type/PyMT (WT/PyMT) and those mice harboring the GPER-null mutation (KO/PyMT). However, by 12 to 13 weeks of age, tumors from KO/PyMT mice were smaller with decreased proliferation compared with those from WT/PyMT mice. Furthermore, tumors from the KO/PyMT mice were of histologically lower grade compared with tumors from their WT counterparts, suggesting less aggressive tumors in the KO/PyMT mice. Finally, KO/PyMT mice displayed dramatically fewer lung metastases compared with WT/PyMT mice. Combined, these data provide the first in vivo evidence that GPER plays a critical role in breast tumor growth and distant metastasis. IMPLICATIONS: This is the first description of a role for the novel estrogen receptor GPER in breast tumorigenesis and metastasis, demonstrating that it represents a new target in breast cancer diagnosis, prognosis, and therapy.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Hiperplasia , Neoplasias Pulmonares/patologia , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos Transgênicos , Ovariectomia , Prognóstico , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/deficiência , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
17.
Sci Rep ; 4: 7564, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25532911

RESUMO

Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Pós-Menopausa/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Ciclopentanos/farmacologia , Feminino , Humanos , Membranas Intracelulares/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Pós-Menopausa/genética , Quinolinas/farmacologia , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética
18.
Endocrinology ; 154(11): 4136-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23970785

RESUMO

Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1ß, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes.


Assuntos
Dislipidemias/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Dislipidemias/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Intolerância à Glucose/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/genética
19.
Obstet Gynecol Int ; 2013: 472720, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24379833

RESUMO

Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERß. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the "ERα-selective" agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of "ER-targeted" therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

20.
Cancer Res ; 72(23): 6200-8, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23090115

RESUMO

Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might dock in the active site of the transposase nuclease domain of Metnase. We identified eight compounds as possible Metnase inhibitors. Interestingly, among these candidate inhibitors were quinolone antibiotics and HIV integrase inhibitors, which share common structural features. Previous reports have described possible activity of quinolones as antineoplastic agents. Therefore, we chose the quinolone ciprofloxacin for further study, based on its wide clinical availability and low toxicity. We found that ciprofloxacin inhibits the ability of Metnase to cleave DNA and inhibits Metnase-dependent DNA repair. Ciprofloxacin on its own did not induce DNA damage, but it did reduce repair of chemotherapy-induced DNA damage. Ciprofloxacin increased the sensitivity of cancer cell lines and a xenograft tumor model to clinically relevant chemotherapy. These studies provide a mechanism for the previously postulated antineoplastic activity of quinolones, and suggest that ciprofloxacin might be a simple yet effective adjunct to cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Reparo do DNA/efeitos dos fármacos , Inibidores de Integrase de HIV/farmacologia , Histona-Lisina N-Metiltransferase/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transposases/genética , Animais , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Cisplatino/farmacologia , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sinergismo Farmacológico , Células HEK293 , Inibidores de Integrase de HIV/química , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos SCID , Modelos Moleculares , Estrutura Terciária de Proteína , Transposases/antagonistas & inibidores , Transposases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA