Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837708

RESUMO

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Catepsina D , Lisossomos , Epitélio Pigmentado da Retina , Doença de Stargardt , Catepsina D/metabolismo , Catepsina D/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Doença de Stargardt/metabolismo , Doença de Stargardt/patologia , Doença de Stargardt/genética , Animais , Humanos , Camundongos , Lisossomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Knockout , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética
2.
Proc Natl Acad Sci U S A ; 117(18): 9857-9864, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32300017

RESUMO

Vitamin A has diverse biological functions and is essential for human survival at every point from embryogenesis to adulthood. Vitamin A and its derivatives have been used to treat human diseases including vision diseases, skin diseases, and cancer. Both insufficient and excessive vitamin A uptake are detrimental, but how its transport is regulated is poorly understood. STRA6 is a multitransmembrane domain cell-surface receptor and mediates vitamin A uptake from plasma retinol binding protein (RBP). STRA6 can mediate both cellular vitamin A influx and efflux, but what regulates these opposing activities is unknown. To answer this question, we purified and identified STRA6-associated proteins in a native mammalian cell type that takes up vitamin A through STRA6 using mass spectrometry. We found that the major protein repeatedly identified as STRA6-associated protein is calmodulin, consistent with the cryogenic electron microscopy (cryo-EM) study of zebrafish STRA6 associated with calmodulin. Using radioactivity-based, high-performance liquid chromatography (HPLC)-based and real-time fluorescence techniques, we found that calmodulin profoundly affects STRA6's vitamin A transport activity. Increased calcium/calmodulin promotes cellular vitamin A efflux and suppresses vitamin A influx through STRA6. Further mechanistic studies revealed that calmodulin enhances the binding of apo-RBP to STRA6, and this enhancement is much more pronounced for apo-RBP than holo-RBP. This study revealed that calmodulin regulates STRA6's vitamin A influx or efflux activity by modulating its preferential interaction with apo-RBP or holo-RBP. This molecular mechanism of regulating vitamin A transport may point to new directions to treat human diseases associated with insufficient or excessive vitamin A uptake.


Assuntos
Transporte Biológico/genética , Calmodulina/genética , Proteínas de Membrana/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Vitamina A/metabolismo , Animais , Apoproteínas/genética , Apoproteínas/metabolismo , Cálcio/metabolismo , Bovinos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Microscopia Crioeletrônica , Humanos , Proteínas de Membrana/metabolismo , Ligação Proteica/genética , Receptores de Superfície Celular/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Vitamina A/genética , Peixe-Zebra/genética
3.
Proc Natl Acad Sci U S A ; 115(47): E11120-E11127, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397118

RESUMO

Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4-/- mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk-/- but not Abca4-/- mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4-/- background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4-/- mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Degeneração Macular/congênito , Células Fotorreceptoras/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Animais , Células Cultivadas , Modelos Animais de Doenças , Lipofuscina/metabolismo , Lisossomos/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fagocitose/imunologia , Retina/patologia , Degeneração Retiniana/patologia , Rodopsina/metabolismo , Doença de Stargardt , c-Mer Tirosina Quinase/genética
4.
Adv Exp Med Biol ; 854: 525-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427455

RESUMO

More than 100 different mutations in the RPE65 gene are associated with inherited retinal degeneration. Although some missense mutations have been shown to abolish isomerase activity of RPE65, the molecular bases leading to loss of function and retinal degeneration remain incompletely understood. Here we show that several missense mutations resulted in significant decrease in expression level of RPE65 in the human retinal pigment epithelium cells. The 26S proteasome non-ATPase regulatory subunit 13, a newly identified negative regulator of RPE65, mediated degradation of mutant RPE65s, which were misfolded and formed aggregates in the cells. Many mutations, including L22P, T101I, and L408P, were mapped on nonactive sites of RPE65. Enzyme activities of these mutant RPE65s were significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. 4-phenylbutyrate (PBA) displayed a significant synergistic effect on the low temperature-mediated rescue of the mutant RPE65s. Our results suggest that a low temperature eye mask and PBA, a FDA-approved oral medicine, may provide a promising "protein repair therapy" that can enhance the efficacy of gene therapy for delaying retinal degeneration caused by RPE65 mutations.


Assuntos
Proteínas Mutantes/genética , Mutação , Degeneração Retiniana/genética , cis-trans-Isomerases/genética , Western Blotting , Domínio Catalítico/genética , Linhagem Celular , Células Cultivadas , Temperatura Baixa , Células HEK293 , Humanos , Microscopia Confocal , Proteínas Mutantes/metabolismo , Fenilbutiratos/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , cis-trans-Isomerases/metabolismo
5.
J Biol Chem ; 289(13): 9113-20, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24550392

RESUMO

Age-related macular degeneration (AMD) is a common central blinding disease of the elderly. Homozygosity for a sequence variant causing Y402H and I62V substitutions in the gene for complement factor H (CFH) is strongly associated with risk of AMD. CFH, secreted by many cell types, including those of the retinal pigment epithelium (RPE), is a regulatory protein that inhibits complement activation. Recessive Stargardt maculopathy is another central blinding disease caused by mutations in the gene for ABCA4, a transporter in photoreceptor outer segments (OS) that clears retinaldehyde and prevents formation of toxic bisretinoids. Photoreceptors daily shed their distal OS, which are phagocytosed by the RPE cells. Here, we investigated the relationship between the CFH haplotype of human RPE (hRPE) cells, exposure to OS containing bisretinoids, and complement activation. We show that hRPE cells of the AMD-predisposing CFH haplotype (HH402/VV62) are attacked by complement following exposure to bisretinoid-containing Abca4(-/-) OS. This activation was dependent on factor B, indicating involvement of the alternative pathway. In contrast, hRPE cells of the AMD-protective CFH haplotype (YY402/II62) showed no complement activation following exposure to either Abca4(-/-) or wild-type OS. The AMD-protective YY402/II62 hRPE cells were more resistant to the membrane attack complex, whereas HH402/VV62 hRPE cells showed significant membrane attack complex deposition following ingestion of Abca4(-/-) OS. These results suggest that bisretinoid accumulation in hRPE cells stimulates activation and dysregulation of complement. Cells with an intact complement negative regulatory system are protected from complement attack, whereas cells with reduced CFH synthesis because of the Y402H and I62V substitutions are vulnerable to disease.


Assuntos
Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Haplótipos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Retinoides/metabolismo , Transportadores de Cassetes de Ligação de ATP/deficiência , Animais , Membrana Celular/metabolismo , Complemento C3b/metabolismo , Fator H do Complemento/biossíntese , Predisposição Genética para Doença/genética , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Epitélio Pigmentado da Retina/patologia
6.
J Biol Chem ; 289(27): 18943-56, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24849605

RESUMO

Over 70 different missense mutations, including a dominant mutation, in RPE65 retinoid isomerase are associated with distinct forms of retinal degeneration; however, the disease mechanisms for most of these mutations have not been studied. Although some mutations have been shown to abolish enzyme activity, the molecular mechanisms leading to the loss of enzymatic function and retinal degeneration remain poorly understood. Here we show that the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13), a newly identified negative regulator of RPE65, plays a critical role in regulating pathogenicity of three mutations (L22P, T101I, and L408P) by mediating rapid degradation of mutated RPE65s via a ubiquitination- and proteasome-dependent non-lysosomal pathway. These mutant RPE65s were misfolded and formed aggregates or high molecular complexes via disulfide bonds. Interaction of PSMD13 with mutant RPE65s promoted degradation of misfolded but not properly folded mutant RPE65s. Many mutations, including L22P, T101I, and L408P, were mapped on non-active sites. Although their activities were very low, these mutant RPE65s were catalytically active and could be significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. Sodium 4-phenylbutyrate and glycerol displayed a significant synergistic effect on the low temperature rescue of the mutant RPE65s by promoting proper folding, reducing aggregation, and increasing membrane association. Our results suggest that a low temperature eye mask and sodium 4-phenylbutyrate, a United States Food and Drug Administration-approved oral medicine, may provide a promising "protein repair therapy" that can enhance the efficacy of gene therapy by reducing the cytotoxic effect of misfolded mutant RPE65s.


Assuntos
Domínio Catalítico , Doença/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicerol/farmacologia , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Fenilbutiratos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Temperatura , Ubiquitinação/efeitos dos fármacos , cis-trans-Isomerases/química
7.
J Biol Chem ; 288(16): 11395-406, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23486466

RESUMO

Interphotoreceptor retinoid-binding protein (IRBP) secreted by photoreceptors plays a pivotal role in photoreceptor survival and function. Recently, a D1080N mutation in IRBP was found in patients with retinitis pigmentosa, a frequent cause of retinal degeneration. The molecular and cellular bases for pathogenicity of the mutation are unknown. Here, we show that the mutation abolishes secretion of IRBP and results in formation of insoluble high molecular weight complexes via disulfide bonds. Co-expression of protein disulfide isomerase A2 that regulates disulfide bond formation or introduction of double Cys-to-Ala substitutions at positions 304 and 1175 in D1080N IRBP promoted secretion of the mutated IRBP. D1080N IRBP was not transported to the Golgi apparatus, but accumulated in the endoplasmic reticulum (ER), bound with the ER-resident chaperone proteins such as BiP, protein disulfide isomerase, and heat shock proteins. Splicing of X-box-binding protein-1 mRNA, expression of activating transcription factor 4 (ATF4), and cleavage of ATF6 were significantly increased in cells expressing D1080N IRBP. Moreover, D1080N IRBP induced up-regulation and nuclear translocation of the C/EBP homologous protein, a proapoptotic transcription factor associated with the unfolded protein response. These results indicate that loss of normal function (nonsecretion) and gain of cytotoxic function (ER stress) are involved in the disease mechanisms of D1080N IRBP. Chemical chaperones and low temperature, which help proper folding of many mutated proteins, significantly rescued secretion of D1080N IRBP, suggesting that misfolding is the molecular basis for pathogenicity of D1080N substitution and that chemical chaperones are therapeutic candidates for the mutation-caused blinding disease.


Assuntos
Proteínas do Olho/metabolismo , Mutação de Sentido Incorreto , Dobramento de Proteína , Retinose Pigmentar/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Resposta a Proteínas não Dobradas , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/genética , Substituição de Aminoácidos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas do Olho/genética , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Isomerases de Dissulfetos de Proteínas/biossíntese , Isomerases de Dissulfetos de Proteínas/genética , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Proteínas de Ligação ao Retinol/genética
8.
Exp Eye Res ; 126: 46-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24060345

RESUMO

Human fetal retinal pigment epithelium (hfRPE), when harvested by mechanical dissection and cultured initially under low calcium conditions, will proliferate and tolerate cryopreservation for future use. Cryopreserved cells can be subsequently thawed and cultured in standard calcium and in the presence of appropriate nutrients to a high state of differentiation, allowing recapitulation of multiple in vivo functions. In this review we briefly discuss some of our previous studies of the classical retinoid visual cycle and introduce current studies in our laboratory that involve two new areas of investigation; the dynamic response of the receptor for retinol binding protein, STRA6 to the addition of holo-retinol binding protein to the culture medium and the protective complement-based response of hfRPE to the ingestion of toxic byproducts of the visual cycle. This response is studied in the context of genotyped hfRPE expressing either predisposing or protective variants of complement factor H.


Assuntos
Doenças Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/citologia , Retinoides/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Ativação do Complemento/fisiologia , Feto/citologia , Humanos , Modelos Biológicos , Epitélio Pigmentado da Retina/fisiologia , Proteínas de Ligação ao Retinol/fisiologia
9.
Proc Natl Acad Sci U S A ; 108(45): 18277-82, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21969589

RESUMO

We introduce a human retinal pigmented epithelial (RPE) cell-culture model that mimics several key aspects of early stage age-related macular degeneration (AMD). These include accumulation of sub-RPE deposits that contain molecular constituents of human drusen, and activation of complement leading to formation of deposit-associated terminal complement complexes. Abundant sub-RPE deposits that are rich in apolipoprotein E (APOE), a prominent drusen constituent, are formed by RPE cells grown on porous supports. Exposure to human serum results in selective, deposit-associated accumulation of additional known drusen components, including vitronectin, clusterin, and serum amyloid P, thus suggesting that specific protein-protein interactions contribute to the accretion of plasma proteins during drusen formation. Serum exposure also leads to complement activation, as evidenced by the generation of C5b-9 immunoreactive terminal complement complexes in association with APOE-containing deposits. Ultrastructural analyses reveal two morphologically distinct forms of deposits: One consisting of membrane-bounded multivesicular material, and the other of nonmembrane-bounded particle conglomerates. Collectively, these results suggest that drusen formation involves the accumulation of sub-RPE material rich in APOE, a prominent biosynthetic product of the RPE, which interacts with a select group of drusen-associated plasma proteins. Activation of the complement cascade appears to be mediated via the classical pathway by the binding of C1q to ligands in APOE-rich deposits, triggering direct activation of complement by C1q, deposition of terminal complement complexes and inflammatory sequelae. This model system will facilitate the analysis of molecular and cellular aspects of AMD pathogenesis, and the testing of new therapeutic agents for its treatment.


Assuntos
Ativação do Complemento , Degeneração Macular/patologia , Modelos Biológicos , Drusas Retinianas/patologia , Apolipoproteínas E/metabolismo , Técnicas de Cultura de Células , Humanos , Imuno-Histoquímica , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
10.
Nat Commun ; 15(1): 1244, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336975

RESUMO

A major limitation to developing chimeric antigen receptor (CAR)-T cell therapies for solid tumors is identifying surface proteins highly expressed in tumors but not in normal tissues. Here, we identify Tyrosinase Related Protein 1 (TYRP1) as a CAR-T cell therapy target to treat patients with cutaneous and rare melanoma subtypes unresponsive to immune checkpoint blockade. TYRP1 is primarily located intracellularly in the melanosomes, with a small fraction being trafficked to the cell surface via vesicular transport. We develop a highly sensitive CAR-T cell therapy that detects surface TYRP1 in tumor cells with high TYRP1 overexpression and presents antitumor activity in vitro and in vivo in murine and patient-derived cutaneous, acral and uveal melanoma models. Furthermore, no systemic or off-tumor severe toxicities are observed in an immunocompetent murine model. The efficacy and safety profile of the TYRP1 CAR-T cell therapy supports the ongoing preparation of a phase I clinical trial.


Assuntos
Melanoma , Receptores de Antígenos Quiméricos , Neoplasias Uveais , Humanos , Camundongos , Animais , Melanoma/terapia , Melanoma/tratamento farmacológico , Imunoterapia Adotiva , Neoplasias Uveais/terapia , Neoplasias Uveais/tratamento farmacológico , Terapia Baseada em Transplante de Células e Tecidos , Glicoproteínas de Membrana , Oxirredutases
11.
Sci Am ; 318(6): 22, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29949548
12.
J Biol Chem ; 286(21): 18593-601, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21464132

RESUMO

Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for complement regulatory proteins (CRP), causing chronic inflammation of the RPE. Here we explore the possible relationship between lipofuscin accumulation and complement activation in vivo. Using the abca4(-/-) mouse model for recessive Stargardt, we investigated the role of lipofuscin fluorophores (A2E-lipofuscin) on oxidative stress and complement activation. We observed higher expression of oxidative-stress genes and elevated products of lipid peroxidation in eyes from abca4(-/-) versus wild-type mice. We also observed higher levels of complement-activation products in abca4(-/-) RPE cells. Unexpectedly, expression of multiple CRPs, which protect cells from attack by the complement system, were lower in abca4(-/-) versus wild-type RPE. To test whether acute exposure of healthy RPE cells to A2E-lipofuscin affects oxidative stress and expression of CRPs, we fed cultured fetal-derived human RPE cells with rod outer segments from wild-type or abca4(-/-) retinas. In contrast to RPE cells in abca4(-/-) mice, human RPE cells exposed to abca4(-/-) rod outer segments adaptively increased expression of both oxidative-stress and CRP genes. These results suggest that A2E accumulation causes oxidative stress, complement activation, and down-regulation of protective CRP in the Stargardt mouse model. Thus, Stargardt disease and age-related macular degeneration may both be caused by chronic inflammation of the RPE.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Proteínas do Sistema Complemento/genética , Humanos , Lipofuscina/genética , Lipofuscina/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Estresse Oxidativo/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Epitélio Pigmentado da Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia
13.
Hum Mol Genet ; 19(21): 4229-38, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20709808

RESUMO

Age-related macular degeneration (AMD) is characterized by the loss or dysfunction of retinal pigment epithelium (RPE) and is the most common cause of vision loss among the elderly. Stem-cell-based strategies, using human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs), may provide an abundant donor source for generating RPE cells in cell replacement therapies. Despite a significant amount of research on deriving functional RPE cells from various stem cell sources, it is still unclear whether stem-cell-derived RPE cells fully mimic primary RPE cells. In this report, we demonstrate that functional RPE cells can be derived from multiple lines of hESCs and hiPSCs with varying efficiencies. Stem-cell-derived RPE cells exhibit cobblestone-like morphology, transcripts, proteins and phagocytic function similar to human fetal RPE (fRPE) cells. In addition, we performed global gene expression profiling of stem-cell-derived RPE cells, native and cultured fRPE cells, undifferentiated hESCs and fibroblasts to determine the differentiation state of stem-cell-derived RPE cells. Our data indicate that hESC-derived RPE cells closely resemble human fRPE cells, whereas hiPSC-derived RPE cells are in a unique differentiation state. Furthermore, we identified a set of 87 signature genes that are unique to human fRPE and a majority of these signature genes are shared by stem-cell-derived RPE cells. These results establish a panel of molecular markers for evaluating the fidelity of human pluripotent stem cell to RPE conversion. This study contributes to our understanding of the utility of hESC/hiPSC-derived RPE in AMD therapy.


Assuntos
Epitélio Pigmentado da Retina/metabolismo , Células-Tronco/metabolismo , Envelhecimento/genética , Western Blotting , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Degeneração Macular/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose , Epitélio Pigmentado da Retina/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia
14.
Sci Am ; 317(3): 16, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813395
15.
16.
Cells ; 11(21)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359858

RESUMO

Recessive Stargardt disease (STGD1) is an inherited retinopathy caused by mutations in the ABCA4 gene. The ABCA4 protein is a phospholipid-retinoid flippase in the outer segments of photoreceptors and the internal membranes of retinal pigment epithelial (RPE) cells. Here, we show that RPE cells derived via induced pluripotent stem-cell from a molecularly and clinically diagnosed STGD1 patient exhibited reduced ABCA4 protein and diminished activity compared to a normal subject. Consequently, STGD1 RPE cells accumulated intracellular autofluorescence-lipofuscin and displayed increased complement C3 activity. The level of C3 inversely correlated with the level of CD46, an early negative regulator of the complement cascade. Persistent complement dysregulation led to deposition of the membrane attack complex on the surface of RPE cells, decrease in transepithelial resistance, and subsequent cell death. These findings are strong evidence of complement-mediated RPE cell damage in STGD1, in the absence of photoreceptors, caused by reduced CD46 regulatory protein.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento , Epitélio Pigmentado da Retina , Humanos , Doença de Stargardt , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas do Sistema Complemento/metabolismo , Morte Celular
17.
Transl Vis Sci Technol ; 11(3): 33, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35348597

RESUMO

Purpose: Modern molecular genetics has revolutionized gene discovery, genetic diagnoses, and precision medicine yet many patients remain unable to benefit from these advances as disease-causing variants remain elusive for up to half of Mendelian genetic disorders. Patient-derived induced pluripotent stem (iPS) cells and transcriptomics were used to identify the fate of unsolved ABCA4 alleles in patients with Stargardt disease. Methods: Multiple independent iPS lines were generated from skin biopsies of three patients with Stargardt disease harboring a single identified pathogenic ABCA4 variant. Derived retinal pigment epithelial cells (dRPE) from a normal control and patient cells were subjected to RNA-Seq on the Novaseq6000 platform, analyzed using DESeq2 with calculation of allele specific imbalance from the pathogenic or a known linked variant. Protein analysis was performed using the automated Simple Western system. Results: Nine dRPE samples were generated, with transcriptome analysis on eight. Allele-specific expression indicated normal transcripts expressed from splice variants albeit at low levels, and missense transcripts expressed at near-normal levels. Corresponding protein was not easily detected. Patient phenotype correlation indicated missense variants expressed at high levels have more deleterious outcomes. Transcriptome analysis suggests mitochondrial membrane biodynamics and the unfolded protein response pathway may be relevant in Stargardt disease. Conclusions: Patient-specific iPS-derived RPE cells set the stage to assess non-expressing variants in difficult-to-detect genomic regions using easily biopsied tissue. Translational Relevance: This "Disease in a Dish" approach is likely to enhance the ability of patients to participate in and benefit from clinical trials while providing insights into perturbations in RPE biology.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Células Epiteliais , Transportadores de Cassetes de Ligação de ATP/genética , Humanos , Fenótipo , Pigmentos da Retina , Doença de Stargardt
18.
J Neurosci ; 29(5): 1486-95, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19193895

RESUMO

The first event in light perception is absorption of a photon by the retinaldehyde chromophore of an opsin pigment in a rod or cone photoreceptor cell. This induces isomerization of the chromophore, rendering the bleached pigment insensitive to light. Restoration of light sensitivity requires chemical reisomerization of retinaldehyde via a multistep enzyme pathway, called the visual cycle, in cells of the retinal pigment epithelium (RPE). Interphotoreceptor retinoid-binding protein (IRBP) is present in the extracellular space between photoreceptors and the RPE. IRBP is known to bind visual retinoids. Previous studies on irbp(-/-) mice suggested that IRBP plays an insignificant role in opsin-pigment regeneration. However, the mice in these studies were uncontrolled for a severe mutation in the rpe65 gene. Rpe65 catalyzes the rate-limiting step in the visual cycle. Here, we examined the phenotype in irbp(-/-) mice homozygous for the wild-type (Leu450) rpe65 gene. We show that lack of IRBP causes delayed transfer of newly synthesized chromophore from RPE to photoreceptors. Removal of bleached chromophore from photoreceptors is also delayed in irbp(-/-) retinas after light exposure. It was previously shown that rods degenerate in irbp(-/-) mice. Here, we show that cones and rods degenerate at similar rates. However, cones are more affected functionally and show greater reductions in outer segment length than rods in irbp(-/-) mice. The disproportionate reductions in cone function and outer-segment length appear to result from mistrafficking of cone opsins due to impaired delivery of retinaldehyde chromophore, which functions as a chaperone for cone opsins but not rhodopsin.


Assuntos
Proteínas do Olho/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Retinoides/metabolismo , Proteínas de Ligação ao Retinol/fisiologia , Animais , Linhagem Celular , Proteínas do Olho/ultraestrutura , Humanos , Camundongos , Camundongos Knockout , Estimulação Luminosa/métodos , Transporte Proteico/fisiologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Proteínas de Ligação ao Retinol/ultraestrutura
19.
Invest Ophthalmol Vis Sci ; 61(8): 15, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658960

RESUMO

Purpose: To describe the pathology of AMD in eyes with geographic atrophy (GA) using confocal scanning laser ophthalmoscopy (SLO) blue light autofluorescence (BAF), and near-infrared (IR) AF and to correlate it with the histology and immunohistochemistry analysis at the margins of the GA lesion. Methods: Enucleated, fixed eyes from seventeen donors with GA were imaged and analyzed by BAF-SLO, IRAF-SLO, and by fundus macroscopy (FM). Tissue from the margins of the GA lesions was cut and processed for resin embedding and histology or cryosectioning and fluorescence in the green and far-red channels, and immunohistochemistry to assess markers of inflammation. Isolated DNA from donors was genotyped for single nucleotide polymorphisms (SNPs) previously shown to be risk factors for the development and progression of AMD. Results: Around the leading edge of the GA lesions we observed hypertrophic RPE cells with cytoplasm filled with granules fluorescent both in the far-red and green-red channels; abundant microglia and macrophage; deposition of complement factor H (CFH) in Bruch's membrane (BM) and increased membrane attack complex (MAC) on RPE cells. Conclusions: Fluorescence imaging of cryosections of RPE cells around the leading edge of the GA lesions suggest that IRAF-SLO visualizes mostly melanin-related compounds. In addition, medium-size GA atrophy displayed the most significant changes in inflammation markers.


Assuntos
Lâmina Basilar da Corioide/patologia , Angiofluoresceinografia/métodos , Atrofia Geográfica/patologia , Oftalmoscopia/métodos , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Idoso , Idoso de 80 Anos ou mais , Feminino , Fundo de Olho , Humanos , Masculino
20.
Redox Biol ; 37: 101787, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33214125

RESUMO

Stargardt macular degeneration (STGD) is a central blinding disease caused by loss of or dysfunctional ABCA4 transporter in both photoreceptors and retinal pigment epithelial (RPE) cells. Toxic bisretinoid-lipofuscin buildup in the RPE cells is a pathological hallmark of STGD patients and its mouse model, the Abca4-/-. These vitamin A-derived fluorophores have been shown to induce oxidative stress, stimulate complement activity, and cause chronic inflammation of the RPE. In vivo modulation of complement regulatory pathway in the STGD mouse model has partially rescued the STGD phenotype suggesting that complement attack on the RPE is an important etiologic factor in disease pathogenesis. While bisretinoid-dependent complement activation was further evidenced in cultured RPE cells, this pathway has never been investigated directly in the context of RPE from STGD donor eyes. In the current study, we evaluate the complement reactivity in postmortem donor eyes of clinically diagnosed STGD patients. All three STGD donor eyes RPE displayed strong immunoreactivity for an antibody specific to 4-Hydroxynonenal, a lipid peroxidation byproduct. Also, unlike the control eyes, all three STGD donor eyes showed significantly increased membrane attack complex deposition on the RPE cells. In STGD eyes, increased MAC accumulation was mirrored by elevated C3 fragments internalized by the RPE and inversely correlated with the levels of complement factor H, a major complement regulatory protein. Here, we report the first direct evidence of RPE complement dysregulation as a causative factor in developing Stargardt phenotype.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Transportadores de Cassetes de Ligação de ATP , Animais , Humanos , Degeneração Macular/genética , Camundongos , Retina , Doença de Stargardt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA