RESUMO
To mitigate the environmental hazards of boron mud waste accumulation, we prepared environmental-friendly SiO2 aerogels by extracting them through alkaline leaching treatment and optimized the experimental conditions. The optimum process parameters for alkaline leaching solution NaOH concentration, leaching temperature, solid-to-liquid ratio, and leaching time were 2 mol/L, 95 °C, 1:4, and 3 h, respectively. In this work, cheap and non-toxic hydroxy silicone oil (PDMS-OH) and hydrogen-containing silicone oil (PMHS) were used as surface modifiers instead of toxic and expensive trimethylchlorosilane (TMCS) in the SiO2 aerogel modification process. The best performance under the optimum conditions was achieved with 60% PDMS-OH-modified SiO2 aerogel. Organic liquid spills, represented by toluene, pose a great danger to the environment and water bodies. We treated free toluene on the water surface with the aerogel mentioned above and its adsorption capacity was up to 2,655 mg/g. After the adsorption of toluene, the aerogels coalesced into agglomerates for subsequent collection and handling. Furthermore, after five repeated applications, the adsorption capacity remained at 91.43% of the initial application. Overall, this research provided an inexpensive and simple solution for the treatment of organic liquids in wastewater.
Assuntos
Boro , Tolueno , Dióxido de Silício , Adsorção , Óleos de Silicone , ÁguaRESUMO
The intercrystalline interfaces have been proven vital in heterostructure catalysts. However, it is still challenging to generate specified heterointerfaces and to make clear the mechanism of a reaction on the interface. Herein, this work proposes a strategy of Fe-catalyzed cascade formation of heterointerfaces for comprehending the hydrogen evolution reaction (HER). In the pure solid-phase reaction system, Fe catalyzes the in situ conversion of MoO2 to MoC and then Mo2 C, and the consecutive formation leaves lavish intercrystalline interfaces of MoO2 -MoC (in Fe-MoO2 /MoC@NC) or MoC-Mo2 C (in Fe-MoC/ß-Mo2 C@NC), which contribute to HER activity. The improved HER activity on the interface leads to further checking of the mechanism with density functional theory calculation. The computation results reveal that the electroreduction (Volmer step) produced H* prefers to be adsorbed on Mo2 C; then two pathways are proposed for the HER on the interface of MoC-Mo2 C, including the single-molecular adsorption pathway (Rideal mechanism) and the bimolecular adsorption pathway (Langmuir-Hinshelwood mechanism). The calculation results further show that the former is favorable, and the reaction on the MoC-Mo2 C heterointerface significantly lowers the energy barriers of the rate-determining steps.
Assuntos
Hidrogênio , Ferro , Catálise , Hidrogênio/química , Molibdênio/químicaRESUMO
Microporous organic polymers (MOPs) possessing large specific surface area with high stability are suitable adsorbent to remove contaminants from water, such as organic pollutant and heavy metal contaminants. Herein, a phenanthroline-based microporous organic polymer (Phen-MOP) has been synthesized through the coupling between benzene and 1,10-phenanthroline. The adsorption kinetics and thermodynamics were investigated. This Phen-MOP exhibited good adsorption efficiency for removal of Cu(II) from water with high structural stability and reusability. The maximum removal efficiency could reach to 98.47% at a Cu(II) concentration of 20 mg/L, pH = 7, 25 °C. It was found by investigating the adsorption isotherms that the maximum adsorption capacity Qm was 128.53 mg/g. Interestingly, after the adsorption of Cu(II), the resulting Phen-MOP-Cu can serve as an efficient heterogeneous catalyst for the Ullmann-type reaction. The structure and composition of the Phen-MOP-Cu were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The results indicated that this catalyst possessed immense specific surface area, large pore volume and high stability. The catalyst was easily recyclable and did not significantly lose catalytic activity after being reused six times.
Assuntos
Fenantrolinas , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Fenantrolinas/análise , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/químicaRESUMO
In recent years, industrial contaminants and especially organic pollutions have been threatening both environmental safety and human health. Particularly, dibutyl phthalate (DBP) has been considered as one of the major hazardous contaminants due to its widespread production and ecological toxicities. Consequently, reliable methods toward the efficient and environmentally benign degradation of DBP in wastewater would be very desirable. To this end, a novel magnetically separable porous TiO2/Ag composite photocatalyst with magnetic Fe3O4 particles as the core was developed and successfully introduced to the photocatalytic degradation of DBP under visible irradiation with a fluorescent lamp. The presented work describes the grafting of Ag co-doped TiO2 composite on the silica-modified porous Fe3O4 magnetic particles with a simple and inexpensive chemical co-precipitation method. Through the investigation of the influencing factors including photocatalyst dosage, initial concentration of DBP, solution pH, and H2O2 content, we found that the degradation efficiency could reach 74%. The photodegradation recovery experiment showed that the degradation efficiency of this photocatalyst remained almost the same after five times of reuse. In addition, a plausible degradation process was also proposed involving the attack of active hydroxyl radicals generated from this photocatalysis system and production of the corresponding intermediates of butyl phthalate, diethyl phthalate, dipropyl phthalate, methyl benzoate, and benzoic acid.
Assuntos
Dibutilftalato , Dióxido de Silício , Catálise , Peróxido de Hidrogênio , Fotólise , Prata , TitânioRESUMO
An efficient and practical approach towards bifunctional phosphorus phenols has been developed through a reaction of diphenylphosphine oxide and the o-quinone methides in situ generated from 2-tosylalkyl phenols under basic conditions. This protocol features simple experimental procedures under mild conditions and is easily scaled up. With this method, a variety of diarylmethyl phosphine oxides can be produced with up to 92% yield.
Assuntos
Indolquinonas/química , Fenóis/síntese química , Fosfinas/química , Fósforo/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Concentração de Íons de Hidrogênio , Fenóis/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.
Assuntos
Aminas/química , Quitosana/química , Terra de Diatomáceas/química , Mercúrio/química , Adsorção , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica , TermogravimetriaRESUMO
Chitosan-based hydrogels, as natural high-molecular-weight flexible materials, are widely utilized due to their outstanding properties. In this research, we developed a one-pot method for synthesizing a novel PVA/CS@PPy-PDAx% conductive hydrogel and explored the internal bonding patterns through molecular dynamics simulations. By adding PPy-PDA nanoparticles into a hydrogel matrix, an interpenetrating conductive network established successfully. The uniform distribution of PPy-PDA nanoparticles endowed the hydrogel with good electrical conductivity (0.171 S/m), significantly enhanced mechanical properties, and strain sensing (S = 5.04), as well as near-infrared photothermal responsiveness (temperature increase of 41.9 °C within 30 s). Additionally, due to the hydrogel's significant photothermal conversion efficiency under near-infrared radiation, it exhibits rapid elimination of Escherichia coli with an antibacterial efficiency exceeding 90 %. The unique hydrogen-bonded crosslinked structure provides the hydrogel with excellent re-healing properties, allowing for restoration through a freeze-thaw process after damage. The conductivity remains nearly unchanged after re-healing, maintaining the material's integrity and functionality. The flexible sensor based on this hydrogel has a response time of 100 ms and can sensitively detect large-scale deformations (e.g., joint bending at various angles), different gravitational forces, and recognize human handwriting. These characteristics make this hydrogel a promising candidate for advancing intelligent wearable technologies and human-machine interaction systems.
Assuntos
Quitosana , Condutividade Elétrica , Escherichia coli , Hidrogéis , Quitosana/química , Hidrogéis/química , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Simulação de Dinâmica Molecular , Nanopartículas/química , TemperaturaRESUMO
This study introduces an innovative and cost-effective biomass adsorbent, the sulfur/cardanol/potato starch composite (SCP), synthesized through inverse vulcanization for the remediation of mercury-contaminated waters. The SCP was characterized using Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS), Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA) and X-ray Diffraction (XRD) to confirm its composition, morphology, and properties. The adsorption capacity of SCP for Hg(II) was 246.88 mg/g with a removal rate of 98.75 %. Adsorption kinetics followed a pseudo-second-order model, indicating chemisorption as the dominant mechanism, while adsorption isotherms were best described by the Langmuir model. Thermodynamic studies confirmed the adsorption process as spontaneous and endothermic. Density Functional Theory (DFT) calculations further elucidate the interaction mechanisms between mercury and the adsorbent, revealing that the thiyl radicals play a crucial role in the adsorption process. The SCP also exhibited a high selectivity for Hg(II) over other co-existing ions and maintains an adsorption capacity over 223.93 mg/g after five regeneration cycles, thus promising practical applications in environmental mercury management.
RESUMO
The utilization efficiency of palladium-based catalysts has sharply increased in many catalytic reactions. However, numerous studies have shown that preparing alloys of palladium with other metals has superior catalytic activity than pure palladium. Additionally, hierarchical porous carbon has gradually developed into an excellent carrier for loading bimetallic nanoparticles. In this study, we firstly pyrolyzed chitosan, sodium bicarbonate and nickel nitrate to create highly dispersed porous carbon materials doped with Ni NPs. The carbon materials were then grafted with silane coupling agent (APTMS) to afford them with amino groups on the surface. Taking advantage of the fact that Pd2+ can react with Ni in spontaneous reduction reaction, Pd was deposited on the surface of Ni to produce PdNi bimetallic-loaded carbon catalysts containing amino groups. The resulting catalysts were examined by a series of characterizations and were found to have a hierarchically porous structure and large specific surface area, which increased the number of active sites of the catalysts. In comparison to other Pd catalysts, the PdNi/HPCS-NH2 catalysts displayed remarkable activity for Suzuki coupling reaction and hydro reduction of nitroaromatics, which exhibited a high turnover frequency value (TOF) of 37,857 h-1 and 680.9 h-1, respectively. These were mainly due to the high dispersion of the PdNi NPs and the superior structure of the carriers. Moreover, the catalysts did not experience a significant decline in activity after ten cycles. All in all, this investigation has created a new approach for the fabrication of novel carriers for Pd catalysts, which is in line with the concept of green chemistry and recyclable.
Assuntos
Carbono , Quitosana , Níquel , Paládio , Quitosana/química , Catálise , Porosidade , Paládio/química , Níquel/química , Carbono/química , Nanopartículas Metálicas/químicaRESUMO
Dynamic color-changing materials have attracted broad interest due to their widespread applications in visual sensing, dynamic color display, anticounterfeiting, and image encryption/decryption. In this work, we demonstrate a novel pH-responsive dynamic color-changing material based on a metal-insulator-metal (MIM) Fabry-Perot (FP) cavity with a pH-responsive poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brush layer as the responsive insulating layer. The pH-responsive PDMAEMA brush undergoes protonation at a low pH value (pH < 6), which induces different swelling degrees in response to pH and thus refractive index and thickness change of the insulator layer of the MIM FP cavity. This leads to significant optical property changes in transmission and a distinguishable color change spanning the whole visible region by adjusting the pH value of the external environment. Due to the reversible conformational change of the PDMAEMA and the formation of covalent bonds between the PDMAEMA molecular chain and the Ag substrate, the MIM FP cavity exhibits stable performance and good reproducibility. This pH-responsive MIM FP cavity establishes a new way to modulate transmission color in the full visible region and exhibits a broad prospect of applications in dynamic color display, real-time environment monitoring, and information encryption and decryption.
RESUMO
Skin trauma is a matter of great concern for public health, emphasizing the importance of reconstructing the microenvironment at the trauma site to facilitate tissue regeneration. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we prepared a thermosensitive hydrogel based on a hydrophilic-hydrophobic-hydrophilic triblock polycarbonate polymer (PTP), and created a composite hydrogel, PTPH-AZP, by incorporating amorphous zinc phosphate (AZP) nanoclusters. We evaluated the effects of PTPH-AZP on human umbilical vein endothelial cells (HUVECs) and the ability to promote skin wound healing. According to the results, PTPH-AZP was found to promote the proliferation, migration, and tube formation of HUVECs through the sustained release of Zn2+ at appropriate concentrations. In vivo experiments demonstrated that in the early-mid stages of wound healing, PTPH-AZP promotes increases in Platelet Endothelial Cell Adhesion Molecule-1 (CD31) and α-Smooth Muscle Actin (α-SMA) content within the wound area, facilitating accelerated re-epithelialization and enhanced collagen deposition. In later healing stages, epidermal thickness in the PTPH-AZP treated group was significantly improved, aligning with surrounding intact skin with no instances of attenuated or hypertrophic scarring observed. The findings from the in vivo study suggested that PTPH-AZP may have a positive impact on vascularization and wound healing. In conclusion, this study presents a promising strategy for skin wound healing, highlighting the potential of PTPH-AZP as an effective therapeutic approach.
RESUMO
Notwithstanding the rapid development of suture elastomers to meet the needs of practical surgery, utilizing the elastomers' self-healing function as a surgical suture to facilitate the healing of wounds has not been addressed. Here, a biodegradable aliphatic polycarbonate smart elastomer, mPEG113-b-PMBC n , was synthesized from aliphatic polycarbonate monomer with methoxy polyethylene glycol (mPEG113, 5.0 kDa) as initiator, which exhibited excellent mechanical properties, highly efficient self-repairing, and remarkable shape memory behavior. The polymers possess outstanding self-healing ability for 150 min. Meanwhile, after 46.33 ± 1.18 s, the temporary shape of the obtained polymer had been recovered. The results of biocompatibility tests reveal that the polymers have excellent biocompatibility and can be regarded as good biomedical materials. Then, in vivo experiments were used to prove the self-healing knotting ability of the polymers and quickly close a wound surface using a programmed shape at physiological temperature. The results demonstrated that the injury wound can be effectively healed compared with traditional sutures, which will offer new study suggestions for subsequent healing areas.
RESUMO
In this study, we have utilized corn bract, a green agricultural by-product, as a carrier. It is subsequently modified with zinc sulfide to synthesize an efficient composite material termed as corn bract/polydopamine@zinc sulfide (CB/PDA@ZnS). This novel composite demonstrates significant potential for biomass removal of mercury ions (Hg(II)). The composition, structure, and morphology of CB/PDA@ZnS composites are characterized by Fourier transform infrared (FT-IR) spectrum, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and scanning electron microscope (SEM). The effect of pH value, adsorbent dosage, initial Hg(II) concentration, adsorption time and temperature, and coexistence ions on the adsorption behavior is investigated. The results show that CB/PDA@ZnS can efficiently remove Hg(II) from water with uptake capacities of 333.03 mg/g and removal efficiency of 99.91% under an optimal conditions (pH of 3, the adsorbent dosage of 0.015 g, contact time of 90 min, and initial concentration of 100 mg/L) at room temperature. The fitting analysis of the experimental data reveals that the adsorption process of Hg(II) follows the quasi-secondary adsorption kinetic model as well as the Langmuir isothermal adsorption model, which is a spontaneous heat absorption process. In addition, the composite adsorbent obtained exhibit excellent selectivity for Hg(II) ions and anti-coexisting ion interference performance. After five cycles of adsorption-desorption experiments, the corresponding adsorption capacity is 331.11 mg/g, accounting for 93.33% of the first adsorption capacity, indicating that the adsorbent has excellent regeneration performance. The stability of the adsorbent and the adsorption mechanism of Hg(II) ion are systematically discussed using FT-IR, XRD, and X-ray photoelectron spectroscopy (XPS). Finally, this adsorbent is tested for the removal of industrial wastewater containing Hg(II), and the adsorption and removal efficiency are 331.67 mg/g and 99.50%, respectively. This study provides a very valuable information for future Hg(II) removal from aqueous solutions.
Assuntos
Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Zea mays , Dopamina/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de HidrogênioRESUMO
In this study, ZnS nanoparticles were loaded on the surface of zeolite NaA and embedded in a carbon aerogel to prepare C@zeolite-ZnS, where zeolite NaA was used in order to adsorb Zn2+ ions released during ion exchange, and the carbon aerogel had good dispersion as a carrier for ZnS to solve the ZnS agglomeration problem. The morphology and structure of C@zeolite-ZnS were characterized by FT-IR, XRD, SEM, BET, and XPS. C@zeolite-ZnS showed excellent selectivity and high removal rate for Hg(II) ions with a maximum adsorption capacity of 795.83 mg/g. When the pH, adsorption time, and Hg(II) ion concentration were 6, 30 min, and 25 mg/L at 298 K, the corresponding adsorption and removal rates reached 99.90% and 124.88 mg/g, respectively. Thermodynamic studies have shown that the adsorption process is a spontaneous heat absorption process. Furthermore, after up to 10 cycles of adsorption, the adsorbent still exhibited outstanding stability and high adsorption capacity with removal rates exceeding 99%. In conclusion, C@zeolite-ZnS, which is stable and reusable and has the ability to meet industrial emission standards after adsorption of Hg(II) ions, is very promising for industrial applications.
Assuntos
Mercúrio , Zeolitas , Zeolitas/química , Amido , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfetos/química , CarbonoRESUMO
A series of novel poly(amino acid)s materials were designed to prepare drug-loaded nanoparticles by physical encapsulation and chemical bonding. The side chain of the polymer contains a large number of amino groups, which effectively increases the loading rate of doxorubicin (DOX). The structure contains disulfide bonds that showing a strong response to the redox environment, which can achieve targeted drug release in the tumor microenvironment. Nanoparticles mainly present spherical morphology with the suitable size for participating in systemic circulation. cell experiments demonstrate the non-toxicity and good cellular uptake behavior of polymers. In vivo anti-tumor experiments shows nanoparticles could inhibit tumor growth and effectively reduce the side effects of DOX.
Assuntos
Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Preparações de Ação Retardada/farmacologia , Aminoácidos , Sistemas de Liberação de Fármacos por Nanopartículas , Doxorrubicina/farmacologia , Doxorrubicina/química , Polímeros/química , Portadores de Fármacos/química , Nanopartículas/química , Oxirredução , Concentração de Íons de Hidrogênio , Microambiente TumoralRESUMO
The size of the nanoparticles is moderate and the dispersion is well, which will not be recognized nonspecifically and clearance by the endothelial reticular system. In this study, stimuli-responsive polypeptides nano-delivery system has been constructed, which can realize the response to various stimuli in the tumor microenvironment. Tertiary amine groups are grafted to the side chain of polypeptides as the point of charge reversal and particle expansion. In addition, a new kind of liquid crystal monomer was prepared by substituting cholesterol-cysteamine, which can promote polymers to realize the transformation of spatial conformation by adjusting the ordered arrangement of macromolecules. The introduction of hydrophobic elements greatly enhanced the self-assembly performance of polypeptides, which could effectively improve the drug loading and encapsulation rate of nanoparticles. Nanoparticles could achieve targeted aggregation in tumor tissues, and there were no toxicity and side effects on normal bodies during treatment, with good safety in vivo.
Assuntos
Doxorrubicina , Nanopartículas , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Nanopartículas/química , Polímeros/química , Peptídeos/química , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Linhagem Celular TumoralRESUMO
Enhancing tissue permeability and achieving drug aggregation is the key to targeted tumor therapy. A series triblock copolymers of poly(ethylene glycol)-poly(L-lysine)-poly(L-glutamine) were synthesized by ring-opening polymerization, and charge-convertible nano-delivery system was constructed by loading doxorubicin (DOX) with 2-(hexaethylimide) ethanol on side chain. In normal environment (pH = 7.4), the zeta potential of the drug-loaded nanoparticle solution is negative, which is conducive to avoiding the identification and clearance of nanoparticles by the reticulo-endothelial system, while potential-reversal can be achieved in the tumor microenvironment, which effectively promotes cellular uptake. Nanoparticles could effectively reduce the distribution of DOX in normal tissues and achieve targeted aggregation at tumor sites, which can effectively improve the antitumor effect, while would not causing toxicity and damage to normal body.
Assuntos
Nanopartículas , Neoplasias , Humanos , Aminoácidos , Sistemas de Liberação de Medicamentos , Preparações de Ação Retardada , Doxorrubicina/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Microambiente TumoralRESUMO
Introduction: Smart elastomers, which possess self-healing and shape memory capabilities, have immense potential in the field of biomedical applications. Polycarbonates and polyesters have gained widespread interest due to their remarkable biocompatibility over the last century. Nevertheless, the lack of functional versatility in conventional polyesters and polycarbonates means that they fall short of meeting the ever-evolving demands of the future. Methods: This paper introduced a new smart elastomer, named mPEG43-b-(PMBC-co-PCL)n, developed from polyester and polycarbonate blends, that possessed shape memory and self-heal capabilities via a physical crosslinking system. Results: The material demonstrated a significant tensile strength of 0.38 MPa and a tensile ratio of 1155.6%, highlighting its favorable mechanical properties. In addition, a conspicuous shape retrieval rate of 93% was showcased within 32.5 seconds at 37°C. Remarkably, the affected area could be repaired proficiently with no irritation experienced during 6h at room temperature, which was indicative of an admirable repair percentage of 87.6%. Furthermore, these features could be precisely modified by altering the proportion of MBC and ε-CL to suit individual constraints. Discussion: This innovative elastomer with exceptional shape memory and self-heal capabilities provides a solid basis and promising potential for the development of self-contracting intelligent surgical sutures in the biomedical field.
RESUMO
In this study, the metal-organic framework ZIF-8 has been successfully planted on the surface of chitosan microspheres (CS/PDA@ZIF-8) using polydopamine as connecting material for the first time, which avoids the use of expensive, non-renewable, and non-biodegradable polystyrene microspheres commonly used as templates to prepare core-shell structures. Moreover, the metal-organic framework ZIF-8 was prepared specially by three different methods and all characterized by SEM, TEM, and BET, and the ZIF-8 shell prepared at room temperature presents a regular morphology, uniform size, large specific surface area (353.1 m2/g) than the shells prepared by the other methods including. The CS/PDA@ZIF-825@Pd with high catalytic activity and high stability was especially prepared by encapsulating Pd nanoparticles into the pores of CS/PDA@ZIF-825. Notably, the fabricated catalyst performed well in an array of reactions, for example the Kapp value of the p-nitrophenol reduction reaction reached 0.0426 s-1, and the TOF of the Suzuki coupling reaction reached 128 h-1. In addition, the ZIF-67, UiO-66, UiO-66-NH2, HKUST-1, and NH2-MIL-53(Al) were also grown on chitosan microcapsules successively to prepare the core-shell microspheres, which prove the universal applicability of this strategy. And beyond that, the introduction of chitosan microspheres endows the material with biodegradable properties and excellent recycling properties.
Assuntos
Quitosana , Estruturas Metalorgânicas , Catálise , Quitosana/química , Microesferas , Nitrofenóis , Paládio/química , Ácidos FtálicosRESUMO
Iron-sulfur nano compounds have been proven to be effective in mercury removal, but the agglomeration, poor dispersion and mobility, and easy oxidation challenges limit their application. Herein, carbon black originating from pyrolysis of waste tires was used as a carrier of nano-FeS to obtain an efficient adsorbent (C@PDA-FeS). It is found that the C@PDA-FeS shows outstanding adsorption ability, excellent selectivity, and high removal rate. A maximum adsorption capacity of 1754 mg/g is obtained, and the residual Hg(II) ion concentration is as low as 3.2 µg/L in the simulated industrial wastewater, which meets the industrial discharge standard under the optimal conditions. Meanwhile, the removal rate of Hg(II) ion can reach 99.8% after up to 10 cycles. More importantly, the C@PDA-FeS still shows good adsorption efficiency, and the removal rate of Hg(II) ion is over 99% (25 mg/L Hg(II) concentration) after 90 days of storage, demonstrating the long-term stability and promising future of the adsorbent. In addition, the waste adsorbent (C@PDA-FeS/HgS) is reused as a photocatalyst to degrade methylene blue, and the corresponding degradation rate is 92.9% (10 mg/L).