Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429579

RESUMO

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Assuntos
Epilepsia , Face/anormalidades , Dedos/anormalidades , Transtornos do Crescimento , Hipogonadismo , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Obesidade , Humanos , Camundongos , Animais , Deficiência Intelectual/genética , Proteínas Repressoras , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fatores de Transcrição
2.
Proc Natl Acad Sci U S A ; 119(24): e2103615119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671424

RESUMO

Skeletal muscle atrophy is commonly associated with aging, immobilization, muscle unloading, and congenital myopathies. Generation of mature muscle cells from skeletal muscle satellite cells (SCs) is pivotal in repairing muscle tissue. Exercise therapy promotes muscle hypertrophy and strength. Primary cilium is implicated as the mechanical sensor in some mammalian cells, but its role in skeletal muscle cells remains vague. To determine mechanical sensors for exercise-induced muscle hypertrophy, we established three SC-specific cilium dysfunctional mouse models-Myogenic factor 5 (Myf5)-Arf-like Protein 3 (Arl3)-/-, Paired box protein Pax-7 (Pax7)-Intraflagellar transport protein 88 homolog (Ift88)-/-, and Pax7-Arl3-/--by specifically deleting a ciliary protein ARL3 in MYF5-expressing SCs, or IFT88 in PAX7-expressing SCs, or ARL3 in PAX7-expressing SCs, respectively. We show that the Myf5-Arl3-/- mice develop grossly the same as WT mice. Intriguingly, mechanical stimulation-induced muscle hypertrophy or myoblast differentiation is abrogated in Myf5-Arl3-/- and Pax7-Arl3-/- mice or primary isolated Myf5-Arl3-/- and Pax7-Ift88-/- myoblasts, likely due to defective cilia-mediated Hedgehog (Hh) signaling. Collectively, we demonstrate SC cilia serve as mechanical sensors and promote exercise-induced muscle hypertrophy via Hh signaling pathway.


Assuntos
Cílios , Força Muscular , Condicionamento Físico Animal , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Cílios/fisiologia , Terapia por Exercício , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia
3.
PLoS Genet ; 17(6): e1009618, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34115759

RESUMO

Coordination of neurite extension with surrounding glia development is critical for neuronal function, but the underlying molecular mechanisms remain poorly understood. Through a genome-wide mutagenesis screen in C. elegans, we identified dyf-4 and daf-6 as two mutants sharing similar defects in dendrite extension. DAF-6 encodes a glia-specific patched-related membrane protein that plays vital roles in glial morphogenesis. We cloned dyf-4 and found that DYF-4 encodes a glia-secreted protein. Further investigations revealed that DYF-4 interacts with DAF-6 and functions in a same pathway as DAF-6 to regulate sensory compartment formation. Furthermore, we demonstrated that reported glial suppressors of daf-6 could also restore dendrite elongation and ciliogenesis in both dyf-4 and daf-6 mutants. Collectively, our data reveal that DYF-4 is a regulator for DAF-6 which promotes the proper formation of the glial channel and indirectly affects neurite extension and ciliogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Genoma Helmíntico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Comunicação Celular , Cílios/genética , Cílios/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutagênese , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Hum Mol Genet ; 30(7): 575-594, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33772537

RESUMO

The PHF6 mutation c.1024C > T; p.R342X, is a recurrent cause of Börjeson-Forssman-Lehmann Syndrome (BFLS), a neurodevelopmental disorder characterized by moderate-severe intellectual disability, truncal obesity, gynecomastia, hypogonadism, long tapering fingers and large ears (MIM#301900). Here, we generated transgenic mice with the identical substitution (R342X mice) using CRISPR technology. We show that the p.R342X mutation causes a reduction in PHF6 protein levels, in both human and mice, from nonsense-mediated decay and nonsense-associated alternative splicing, respectively. Magnetic resonance imaging studies indicated that R342X mice had a reduced brain volume on a mixed genetic background but developed hydrocephaly and a high incidence of postnatal death on a C57BL/6 background. Cortical development proceeded normally, while hippocampus and hypothalamus relative brain volumes were altered. A hypoplastic anterior pituitary was also observed that likely contributes to the small size of the R342X mice. Behavior testing demonstrated deficits in associative learning, spatial memory and an anxiolytic phenotype. Taken together, the R342X mice represent a good preclinical model of BFLS that will allow further dissection of PHF6 function and disease pathogenesis.


Assuntos
Modelos Animais de Doenças , Epilepsia/genética , Face/anormalidades , Dedos/anormalidades , Predisposição Genética para Doença/genética , Transtornos do Crescimento/genética , Hipogonadismo/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Obesidade/genética , Proteínas Repressoras/genética , Animais , Aprendizagem por Associação/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Face/fisiopatologia , Feminino , Dedos/fisiopatologia , Perfilação da Expressão Gênica/métodos , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Humanos , Hipogonadismo/metabolismo , Hipogonadismo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/metabolismo , Obesidade/fisiopatologia , RNA-Seq/métodos , Proteínas Repressoras/metabolismo , Memória Espacial/fisiologia
5.
Environ Res ; 219: 115097, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566965

RESUMO

As one of the key stable crops to feed half of the world's population, how rice cropping system affects honey bee health regarding pesticide exposure and forage availability is under investigated. We predicted honey bees were stressed by high pesticide exposure and forage dearth in monoculture rice systems. Providing access to natural habitats is a typical approach to mitigate the negative impact of intensive agriculture on honey bees. We aimed to determine if bee colonies located in landscapes with more cover of forest habitat would collect more forage and be exposed to less pesticides. We selected beekeeping locations in rice dominated landscapes (as control), mosaic landscapes of rice and medium woodland (MW) cover, and landscapes of high woodland (HW) cover, respectively, in July when rice starts bloom and pesticides are commonly used. Colonies were inspected at a biweekly frequency from July to October with population growth and forage (nectar and pollen) availability estimated. Pollen and bees were collected in middle August for pesticide exposure analysis. We did not observe enhancement in forage availability and reduction in pesticide exposure in landscapes with increased forest habitat (i.e., MW or HW cover), and all colonies failed in the end. Other natural habitats that can supplement flower shortage periods in forest can be considered for supporting bee health. Our results suggest that forest should be carefully assessed for being incorporated into beekeeping management or pollinator conservation when forest phenology can be a factor to affect its impact as a natural habitat.


Assuntos
Oryza , Praguicidas , Abelhas , Animais , Agricultura , Criação de Abelhas , Néctar de Plantas
6.
J Viral Hepat ; 29(10): 890-898, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35793410

RESUMO

Acute-on-chronic liver failure (ACLF) is a severe clinical syndrome associated with high short-term mortality and reversibility. This study aimed to compare the characteristics of survival and reversibility in hepatitis B virus (HBV)-related ACLF (HBV-ACLF) patients with and without previous decompensation. Overall, 1044 patients who fulfilled the acute hepatic insult criteria of the APASL-ACLF Research Consortium (AARC) definition were enrolled from a prospectively established cohort of HBV-related liver failure patients. These patients were divided into the AARC ACLF group and the non-AARC ACLF group according to prior decompensation. Mortality, reversibility of ACLF syndrome, and predicted factors associated with reversibility were evaluated. Liver transplantation-free mortality of the AARC ACLF group was significantly lower than that of the non-AARC ACLF group (28 days: 28.2% vs. 40.3%, p = .012; 90 days: 41.7% vs. 65.4%, p < .001). The 5-year cumulative reversal rates of ACLF syndrome were 88.0% (374/425) and 66.0% (31/47) in the AARC and non-AARC ACLF groups, respectively, (p = .039). Following reversibility of ACLF syndrome, 340/374 (90.9%) and 21/31 (67.7%) patients in the AARC and non-AARC ACLF groups, respectively, maintained a stable status within 5 years. Although prior decompensation indicated poor reversibility of ACLF syndrome, HBV-infected patients with prior decompensation who fulfilled the acute hepatic insult criteria of the AARC definition showed favourable reversibility and maintained a stable status after receiving nucleoside analogues. The AARC ACLF definition identified HBV-ACLF as a distinct syndrome with good reversibility. HBV-infected patients with prior decompensation could be included in the AARC ACLF management.


Assuntos
Insuficiência Hepática Crônica Agudizada , Transplante de Fígado , Estudos de Coortes , Vírus da Hepatite B , Humanos , Prognóstico
7.
Exp Cell Res ; 401(1): 112520, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639177

RESUMO

We previously found that ATP synthases localize to male-specific sensory cilia and control the ciliary response by regulating polycystin signalling in Caenorhabditis elegans. Herein, we discovered that the ciliary localization of ATP synthase is evolutionarily conserved in mammals. We showed that the ATP synthase subunit F1ß is colocalized with the cilia marker acetylated α-tubulin in both mammalian renal epithelial cells (MDCK) and normal mouse cholangiocytes (NMCs). Treatment with ATP synthase inhibitor oligomycin impaired ciliogenesis in MDCK cells, and F1ß was co-immunoprecipitated with PKD2 in mammalian cells. Our study provides evidence for the evolutionarily conserved localization of ATP synthase in cilia from worm to mammals. Defects in ATP synthase can lead to ciliary dysfunction, which may be a potential mechanism of polycystic kidney disease.


Assuntos
Cílios/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Chaperonas Moleculares/genética , Canais de Cátion TRPP/genética , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Trifosfato de Adenosina/genética , Animais , Caenorhabditis elegans/genética , Cílios/metabolismo , Cães , Cinesinas/genética , Células Madin Darby de Rim Canino , Mamíferos , Camundongos , Oligomicinas/farmacologia , Doenças Renais Policísticas/enzimologia , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Processamento de Proteína Pós-Traducional/genética
8.
J Cell Mol Med ; 25(6): 2861-2871, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33512774

RESUMO

Cisplatin nephrotoxicity has been considered as serious side effect caused by cisplatin-based chemotherapy. Recent evidence indicates that renal tubular cell apoptosis and inflammation contribute to the progression of cisplatin-induced acute kidney injury (AKI). Hepatocyte nuclear factor 1ß (HNF1ß) has been reported to regulate the development of kidney cystogenesis, diabetic nephrotoxicity, etc However, the regulatory mechanism of HNF1ß in cisplatin nephrotoxicity is largely unknown. In the present study, we examined the effects of HNF1ß deficiency on the development of cisplatin-induced AKI in vitro and in vivo. HNF1ß down-regulation exacerbated cisplatin-induced RPTC apoptosis by indirectly inducing NF-κB p65 phosphorylation and nuclear translocation. HNF1ß knockdown C57BL/6 mice were constructed by injecting intravenously with HNF1ß-interfering shRNA and PEI. The HNF1ß scramble and knockdown mice were treated with 30 mg/kg cisplatin for 3 days to induce acute kidney injury. Cisplatin treatment caused increased caspase 3 cleavage and p65 phosphorylation, elevated serum urea nitrogen and creatinine, and obvious histological damage of kidney such as fractured tubules in control mice, which were enhanced in HNF1ß knockdown mice. These results suggest that HNF1ß may ameliorate cisplatin nephrotoxicity in vitro and in vivo, probably through regulating NF-κB signalling pathway.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Fator 1-beta Nuclear de Hepatócito/genética , NF-kappa B/metabolismo , Néfrons/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Modelos Animais de Doenças , Fator 1-beta Nuclear de Hepatócito/metabolismo , Túbulos Renais/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Ratos , Fator de Transcrição RelA/metabolismo
9.
J Med Genet ; 57(6): 405-413, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32381728

RESUMO

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a genetically heterogeneous disease characterised by three-dimensional deformity of the spine in the absence of a congenital spinal anomaly or neurological musculoskeletal disorder. The clinical variability and incomplete penetrance of some genes linked with AIS indicate that this disease constitutes an oligogenic trait. OBJECTIVE: We aimed to explore the oligogenic nature of this disease and identify novel AIS genes. METHODS: We analysed rare damaging variants within AIS-associated genes by using exome sequencing in 40 AIS trios and 183 sporadic patients. RESULTS: Multiple variants within AIS-associated genes were identified in eight AIS trios, and five individuals harboured rare damaging variants in the FLNB gene. The patients showed more frequent oligogenicity than the controls. In the gene-based burden test, the top signal resided in FLNB. In functional studies, we found that the AIS-associated FLNB variants altered the protein's conformation and subcellular localisation and its interaction with other proteins (TTC26 and OFD1) involved in AIS. The most compelling evidence of an oligogenic basis was that the number of rare damaging variants was recognised as an independent prognostic factor for curve progression in Cox regression analysis. CONCLUSION: Our data indicate that AIS is an oligogenic disease and identify FLNB as a susceptibility gene for AIS.


Assuntos
Filaminas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Escoliose/genética , Adolescente , Criança , Exoma/genética , Feminino , Filaminas/ultraestrutura , Testes Genéticos , Variação Genética/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Conformação Proteica , Proteínas/genética , Escoliose/patologia , Sequenciamento do Exoma
10.
J Headache Pain ; 22(1): 61, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187358

RESUMO

PURPOSE: Migraine is often accompanied with chronic tinnitus that will affect the cerebral blood flow (CBF) and exacerbate the tinnitus distress. However, the potential relationship between migraine and tinnitus remains unclear. This study will investigate whether aberrant CBF patterns exist in migraine patients with tinnitus and examine the influence of migraine on CBF alterations in chronic tinnitus. MATERIALS AND METHODS: Participants included chronic tinnitus patients (n = 45) and non-tinnitus controls (n = 50), matched for age, sex, education, and hearing thresholds. CBF images were collected and analyzed using arterial spin labeling (ASL) perfusion functional magnetic resonance imaging (fMRI). Regions with major CBF differences between tinnitus patients and non-tinnitus controls were first detected. The effects of migraine on tinnitus for CBF alterations were further examined. Correlation analyses illustrated the association between CBF values and tinnitus severity as well as between CBF and severity of migraine. RESULTS: Compared with non-tinnitus controls, chronic tinnitus patients without migraine exhibited decreased CBF, primarily in right superior temporal gyrus (STG), bilateral middle frontal gyrus (MFG), and left superior frontal gyrus (SFG); decreased CBF in these regions was correlated with tinnitus distress. There was a significant effect of migraine on tinnitus for CBF in right STG and MFG. Moreover, the severity of migraine correlated negatively with CBF in tinnitus patients. CONCLUSIONS: Chronic tinnitus patients exhibited reduced CBF in the auditory and prefrontal cortex. Migraine may facilitate a CBF decrease in the setting of tinnitus, which may underlie the neuropathological mechanisms of chronic tinnitus comorbid with migraine.


Assuntos
Transtornos de Enxaqueca , Zumbido , Encéfalo , Circulação Cerebrovascular , Humanos , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/diagnóstico por imagem , Perfusão , Zumbido/diagnóstico por imagem
11.
Liver Int ; 40(11): 2685-2693, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33047868

RESUMO

BACKGROUND & AIM: An affordable, pangenotypic regimen remains as an unmet medical need for chronic hepatitis C patients in China. This single-arm, open-label, multicenter, phase 3 trial evaluated the efficacy and safety of coblopasvir, a pangenotypic non-structural protein 5A (NS5A) inhibitor, combined with sofosbuvir for treating Chinese patients with chronic hepatitis C virus (HCV) infection. METHODS: Treatment-naïve and interferon-experienced adult patients, including those with advanced fibrosis (F3) or compensated cirrhosis (F4), were treated with a universal, combinational regimen of coblopasvir 60 mg and sofosbuvir 400 mg, once daily, for 12 weeks. The primary efficacy endpoint was sustained virological response at post-treatment week 12 (SVR12). RESULTS: Overall, 371 patients (men, 51%; age, 47 ± 11 years; genotype 1a < 1%, 1b 48%, 2a 26%, 3a 6%, 3b 7% and 6 12%) were enrolled from 19 sites. Fifty-one patients (14%) had F3, 39 patients (11%) had F4 and 39 patients (11%) were interferon experienced. The overall SVR12 was 97% (95% CI, [94%, 98%]) for the full analysis set and was equal to or above 90% for all predefined subsets. Ten patients (3%) experienced virological relapse and two patients did not complete follow-up. No adverse events (AEs) occurred at a frequency ≥5%, and the most often reported AEs (≥1%) were neutropenia and fatigue. The majority of AEs were mild to moderate and transient without specific medical intervention. CONCLUSIONS: The universal, pangenotypic combo of coblopasvir plus sofosbuvir is an efficacious and safe treatment for Chinese patients monoinfected with HCV of genotype 1, 2, 3 and 6, including those with compensated cirrhosis. LAY SUMMARY: The regimen of coblopasvir and sofosbuvir is a safe and effective treatment for Chinese patients with genotype 1, 2, 3 and 6 HCV infection, including those with compensated cirrhosis. Therefore, this regimen would be a novel choice of treatment for this patient population.


Assuntos
Hepatite C Crônica , Sofosbuvir , Adulto , Antivirais/efeitos adversos , China , Quimioterapia Combinada , Genótipo , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Sofosbuvir/uso terapêutico , Resultado do Tratamento
12.
Mol Hum Reprod ; 24(3): 111-122, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361143

RESUMO

STUDY QUESTION: What is the role of epididymal cysteine-rich secretory proteins (CRISPs) in male fertility? SUMMARY ANSWER: While epididymal CRISPs are not absolutely required for male fertility, they are required for optimal sperm function. WHAT IS KNOWN ALREADY: CRISPs are members of the CRISP, Antigen 5 and Pathogenesis related protein 1 (CAP) superfamily and are characterized by the presence of an N-terminal CAP domain and a C-terminal CRISP domain. CRISPs are highly enriched in the male reproductive tract of mammals, including in the epididymis. Within humans there is one epididymal CRISP, CRISP1, whereas in mice there are two, CRISP1 and CRISP4. STUDY DESIGN, SIZE, DURATION: In order to define the role of CRISPs within the epididymis, Crisp1 and Crisp4 knockout mouse lines were produced then interbred to produce Crisp1 and 4 double knockout (DKO) mice, wherein the expression of all epididymal CRISPs was ablated. Individual and DKO models were then assessed, relative to their own strain-specific wild type littermates for fertility, and sperm output and functional competence at young (10-12 weeks of age) and older ages (22-24 weeks). Crisp1 and 4 DKO and control mice were also compared for their ability to bind to the zona pellucida and achieve fertilization. PARTICIPANTS/MATERIALS, SETTING, METHODS: Knockout mouse production was achieved using modified embryonic stem cells and standard methods. The knockout of individual genes was confirmed at a mRNA (quantitative PCR) and protein (immunochemistry) level. Fertility was assessed using breeding experiments and a histological assessment of testes and epididymal tissue. Sperm functional competence was assessed using a computer assisted sperm analyser, induction of the acrosome reaction using progesterone followed by staining for acrosome contents, using immunochemical and western blotting to assess the ability of sperm to manifest tyrosine phosphorylation under capacitating conditions and using sperm-zona pellucida binding assays and IVF methods. A minimum of three biological replicates were used per assay and per genotype. MAIN RESULTS AND THE ROLE OF CHANCE: While epididymal CRISPs are not absolutely required for male fertility, their production results in enhanced sperm function and, depending on context, CRISP1 and CRISP4 act redundantly or autonomously. Specifically, CRISP1 is the most important CRISP in the establishment of normally motile sperm, whereas CRISP4 acts to enhance capacitation-associated tyrosine phosphorylation, and CRISP1 and CRISP4 act together to establish normal acrosome function. Both are required to achieve optimal sperm-egg interaction. The presence of immune infiltrates into the epididymis of older, but not younger, DKO animals also suggests epididymal CRISPs function to produce an immune privileged environment for maturing sperm within the epididymis. LIMITATIONS REASONS FOR CAUTION: Caution should be displayed in the translation of mouse-derived data into the human wherein the histology of the epididymis is someone what different. The mice used in the study were housed in a specific pathogen-free environment and were thus not exposed to the full range of environmental challenges experienced by wild mice or humans. As such, the role of CRISPs in the maintenance of an immune privileged environment, for example, may be understated. WIDER IMPLICATIONS OF THE FINDINGS: The combined deletion of Crisp1 and Crisp4 in mice is equivalent to the removal of all CRISP expression in humans. As such, these data suggest that mammalian CRISPs, including that in humans, function to enhance sperm function and thus male fertility. These data also suggest that in the presence of an environmental challenge, CRISPs help to maintain an immune privileged environment and thus, protect against immune-mediated male infertility. LARGE SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTEREST(S): This study was funded by the National Health and Medical Research Council, the Victorian Cancer Agency and a scholarship from the Chinese Scholarship Council. The authors have no conflicts of interest to declare.


Assuntos
Epididimo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Plasma Seminal/metabolismo , Maturação do Esperma/fisiologia , Acrossomo/metabolismo , Acrossomo/fisiologia , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas de Plasma Seminal/genética , Maturação do Esperma/genética
13.
Yi Chuan ; 40(2): 155-161, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29428908

RESUMO

Tyramine is a biological polyamine, which serves important functions as neurotransmitters, neuromodulators and neurohormone of the central nervous system. It participates in the regulation of various behavior and physiological processes in insects. For example, tyramine and its receptor genes are involved in the regulation of learning and memory in the animals. In this study, the full-length cDNA sequences of the tyramine receptor genes (Actyr1 and Actyr2) of the Chinese honeybee, Apis cerana cerana, were cloned and sequenced for the first time. Their expression patterns were examined in different tissues by qRT-PCR and localized in the head by in situ hybridization with digoxigenin (DIG)-labeled RNA probes. The full-length cDNAs of Actyr1 and Actyr2 are 1241 bp (GenBank accession no. KC814693) and 1270 bp (GenBank accession no.KC814693) in length and encode 297 amino acids and 399 amino acids, respectively. qRT-PCR results showed that the expression levels of both Actyr1 and Actyr2 were the highest in the head, followed by the abdomen, then the antennae and the lowest in the thorax. The expression level in the head was significantly higher than that in other tissues. Moreover, in situ hybridization showed that the expression of Actyr1 and Actyr2 genes were mainly localized to the Kenyon cells of the mushroom bodies and cells around the antennal lobes. These observations suggest that some interactions between these two genes in certain cells could be important in regulating various biological functions, such as learning and memory, in the honeybee.


Assuntos
Abelhas/genética , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Receptores de Amina Biogênica/genética , Animais , Encéfalo/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Hibridização In Situ , Proteínas de Insetos/classificação , Corpos Pedunculados/metabolismo , Filogenia , Isoformas de Proteínas/genética , Receptores de Amina Biogênica/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
14.
J Cell Sci ; 127(Pt 6): 1293-305, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24434581

RESUMO

Centriole biogenesis depends on the polo-like kinase (PLK4) and a small group of structural proteins. The spatiotemporal regulation of these proteins at pre-existing centrioles is essential to ensure that centriole duplication occurs once per cell cycle. Here, we report that phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C, hereafter referred to as PIPKIγ) plays an important role in centriole fidelity. PIPKIγ localized in a ring-like pattern in the intermediate pericentriolar materials around the proximal end of the centriole in G1, S and G2 phases, but not in M phase. This localization was dependent upon an association with centrosomal protein of 152 KDa (CEP152). Without detaining cells in S or M phase, the depletion of PIPKIγ led to centriole amplification in a manner that was dependent upon PLK4 and spindle assembly abnormal protein 6 homolog (SAS6). The expression of exogenous PIPKIγ reduced centriole amplification that occurred as a result of endogenous PIPKIγ depletion, hydroxyurea treatment or PLK4 overexpression, suggesting that PIPKIγ is likely to function at the PLK4 level to restrain centriole duplication. Importantly, we found that PIPKIγ bound to the cryptic polo-box domain of PLK4 and that this binding reduced the kinase activity of PLK4. Together, our findings suggest that PIPKIγ is a novel negative regulator of centriole duplication, which acts by modulating the homeostasis of PLK4 activity.


Assuntos
Centríolos/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ubiquitinação , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosfotransferases (Aceptor do Grupo Álcool)/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteólise
15.
Exp Cell Res ; 319(15): 2316-22, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23548655

RESUMO

The primary cilia are microtubule-based organelles that protrude from most of the eukaryotic cells. Recognized as the cell's antenna, primary cilium functions as a signaling hub for many physiologically and developmentally important signaling cascades. Ciliary dysfunction causes a wide spectrum of syndromic human genetic diseases collectively termed "ciliopathies". Mounting evidences have shown that various small GTPases have been implicated in the context of cilia as well as human ciliopathies. However, how these small GTPases affect cilia formation and function remains poorly understood. Here we review and discuss the ciliary role of three Arf-like small GTPases (Arls), Arl3, Arl6, and Arl13b.


Assuntos
Fatores de Ribosilação do ADP/genética , Cílios/metabolismo , Células Eucarióticas/metabolismo , Transdução de Sinais , Fatores de Ribosilação do ADP/metabolismo , Animais , Cílios/genética , Células Eucarióticas/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Morfogênese , Transporte Proteico
16.
Sci Rep ; 14(1): 2281, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280897

RESUMO

This study aimed to reveal the soil reinforcement by shrub root systems after repeated stress from external forces, such as high winds and runoff, for extended periods in the wind-hydraulic compound erosion zone. Using the widely distributed Shandong mine area soil and water-conserving plant species, Caragana microphylla, Hippophae rhamnoides, and Artemisia ordosica, cyclic loading tests were conducted on taproots of the three plant species (1-5 mm diameter) via a TY8000 servo-type machine to investigate the taproots' tensile properties response to repeated loading-unloading using simulated high wind pulling and runoff scouring. Our study revealed that the tensile force was positively correlated with the root diameter but the tensile strength was negatively correlated under monotonic and cyclic loading of the three plants' taproots. However, after cyclic loading, the three plant species' taproots significantly enhanced the tensile force and strength more than monotonic loading (P < 0.05). The taproot force-displacement hysteresis curves of the three plant species revealed obvious cyclic characteristics. Structural equation modeling analysis revealed that root diameter and damage method directly affected the taproots' survival rate, reflecting their sustainable soil reinforcement capacity. The damage method significantly influenced the soil reinforcement more than the root diameter. Our findings reveal that the plant species' taproots can adapt more to the external environment and enhance their resistance to erosion after natural low perimeter erosion damage, effectively inducing soil reinforcement. Particularly, the taproots of Caragana microphylla have superior soil-fixing ability and can be used for ecological restoration.


Assuntos
Caragana , Hippophae , Solo , China , Caragana/fisiologia , Resistência à Tração , Plantas
17.
Curr Drug Deliv ; 21(5): 775-784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37349996

RESUMO

BACKGROUND: Most chemotherapeutic agents are characterized by poor water solubility and non-specific distribution. Polymer-based conjugates are promising strategies for overcoming these limitations. OBJECTIVE: This study aims to fabricate a polysaccharide, dextran-based, dual-drug conjugate by covalently grafting docetaxel (DTX) and docosahexaenoic acid (DHA) onto the bifunctionalized dextran through a long linker, and to investigate the antitumor efficacy of this conjugate against breast cancer. METHODS: DTX was firstly coupled with DHA and covalently bounded with the bifunctionalized dextran (100 kDa) through a long linker to produce a conjugate dextran-DHA-DTX (termed C-DDD). Cytotoxicity and cellular uptake of this conjugate were measured in vitro. Drug biodistribution and pharmacokinetics were investigated through liquid chromatography/mass spectrometry analysis. The inhibitory effects on tumor growth were evaluated in MCF-7- and 4T1-tumor-bearing mice. RESULTS: The loading capacity of the C-DDD for DTX was 15.90 (weight/weight). The C-DDD possessed good water solubility and was able to self-assemble into nanoparticles measuring 76.8 ± 5.5 nm. The maximum plasma concentration and area under the curve (0-∞) for the released DTX and total DTX from the C-DDD were significantly enhanced compared with the conventional DTX formulation. The C-DDD selectively accumulated in the tumor, with limited distribution was observed in normal tissues. The C-DDD exhibited greater antitumor activity than the conventional DTX in the triplenegative breast cancer model. Furthermore, the C-DDD nearly eliminated all MCF-7 tumors in nude mice without leading to systemic adverse effects. CONCLUSION: This dual-drug C-DDD has the potential to become a candidate for clinical application through the optimization of the linker.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Docetaxel/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Dextranos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Distribuição Tecidual , Camundongos Nus , Taxoides/farmacologia , Taxoides/uso terapêutico , Taxoides/química , Portadores de Fármacos/química , Linhagem Celular Tumoral , Nanopartículas/química , Água , Camundongos Endogâmicos BALB C
18.
Adv Sci (Weinh) ; 11(24): e2308820, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634253

RESUMO

Serving as the cell's sensory antennae, primary cilia are linked to numerous human genetic diseases when they malfunction. DZIP1L, identified as one of the genetic causes of human autosomal recessive polycystic kidney disease (ARPKD), is an evolutionarily conserved ciliary basal body protein. Although it has been reported that DZIP1L is involved in the ciliary entry of PKD proteins, the underlying mechanism remains elusive. Here, an uncharacterized role of DZIP1L is reported in modulating the architecture and function of transition fibers (TFs), striking ciliary base structures essential for selective cilia gating. Using C. elegans as a model, C01G5.7 (hereafter termed DZIP-1) is identified as the sole homolog of DZIP1L, which specifically localizes to TFs. While DZIP-1 or ANKR-26 (the ortholog of ANKRD26) deficiency shows subtle impact on TFs, co-depletion of DZIP-1 and ANKR-26 disrupts TF assembly and cilia gating for soluble and membrane proteins, including the ortholog of ADPKD protein polycystin-2. Notably, the synergistic role for DZIP1L and ANKRD26 in the formation and function of TFs is highly conserved in mammalian cilia. Hence, the findings illuminate an evolutionarily conserved role of DZIP1L in TFs architecture and function, highlighting TFs as a vital part of the ciliary gate implicated in ciliopathies ARPKD.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cílios/metabolismo , Cílios/genética , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Humanos , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/patologia
19.
Nephron ; 147(12): 721-724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459847

RESUMO

Almost every cell in the kidney, including renal tubular epithelial cells, has a primary cilium, which is a membrane-bound, hair-like structure protruding from the cellular surface. Dysfunction of primary cilia has been linked to a wide spectrum of human genetic diseases, termed ciliopathies. Planar cell polarity (PCP) refers to the coordinated alignment of cells along the cell sheet or tissue plane, a fundamental process in embryo development and organogenesis. Interestingly, there is evidence that primary cilium and PCP are interconnected. However, very limited is known about the involvement of cilia and PCP in kidney injury and repair. By using cell and mouse models, we have demonstrated a protective role of primary cilia in acute kidney injury. Mechanistically, we unveiled a reciprocal promoting relationship between cilia and autophagy in kidney tubular cells, and, accordingly, cilia may protect tubular cells by enhancing autophagy. Our recent studies further demonstrated that PCP dysfunction exaggerates acute kidney injury and may also contribute to maladaptive kidney repair after acute kidney injury. These findings provide a novel dimension to further understanding kidney injury and repair from the standpoint of cell biology.


Assuntos
Injúria Renal Aguda , Cílios , Camundongos , Animais , Humanos , Cílios/metabolismo , Polaridade Celular/genética , Rim , Injúria Renal Aguda/metabolismo
20.
Sci Rep ; 13(1): 2032, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739468

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune disease that can lead to severe joint damage and disability. And early diagnosis and treatment of RA can avert or substantially slow the progression of joint damage in up to 90% of patients, thereby preventing irreversible disability. Previous research indicated that 50% of the risk for the development of RA is attributable to genetic factors, but the pathogenesis is not well understood. Thus, it is urgent to identify biomarkers to arrest RA before joints are irreversibly damaged. Here, we first use the Robust Rank Aggregation method (RRA) to identify the differentially expressed genes (DEGs) between RA and normal samples by integrating four public RA patients' mRNA expression data. Subsequently, these DEGs were used as the input for the weighted gene co-expression network analysis (WGCNA) approach to identify RA-related modules. The function enrichment analysis suggested that the RA-related modules were significantly enriched in immune-related actions. Then the hub genes were defined as the candidate genes. Our analysis showed that the expression levels of candidate genes were significantly associated with the RA immune microenvironment. And the results indicated that the expression of the candidate genes can use as predictors for RA. We hope that our method can provide a more convenient approach for the early diagnosis of RA.


Assuntos
Artrite Reumatoide , Genes Essenciais , Humanos , Artrite Reumatoide/genética , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA