RESUMO
OBJECTIVES: To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS: The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS: Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION: Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.
Assuntos
Antineoplásicos , Glioblastoma , Humanos , Ratos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Zeaxantinas/farmacologia , Caspase 3 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores da Angiogênese/farmacologia , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Movimento CelularRESUMO
OBJECTIVES: This study evaluated the impact of self-management interventions based on the COM-B model on peri-implant conditions in older adults with periodontitis. MATERIALS AND METHODS: The patients were randomly divided into two groups: Group 1 (control group) received only an oral health education (OHE) pamphlet. Group 2 (test group) performed a self-management intervention based on the COM-B model. Each patient was examined for the most inflammatory implant. The measurement parameters included self-efficacy, self-management ability, and clinical indicators such as probing depth (PD), bleeding on probing (BOP), modified gingival index (mGI), modified plaque index (mPI), and peri-implant mucositis severity score (PMSS). The data was collected at baseline, 4, 8, and 12 weeks. RESULTS: 42 patients underwent testing for 3 months. After 12 weeks, the improvement of self-efficacy, self-management ability, and the reduction of BOP, mPI, and PMSS in the test group was significantly higher than in the control group. CONCLUSION: The study suggests that self-management interventions based on the COM-B model can enhance the self-management ability of older adults with periodontitis and reduce peri-implant inflammation. This method is more effective than distributing OHE pamphlets. TRIAL REGISTRATION: The randomized controlled clinical trial was registered on Chinese Clinical Trial Registry (No. ChiCTR2400082660, Date: 03/04/2024).
Assuntos
Periodontite , Autoeficácia , Humanos , Feminino , Masculino , Idoso , Periodontite/terapia , Autogestão/métodos , Índice Periodontal , Pessoa de Meia-Idade , Implantes Dentários , Educação em Saúde Bucal/métodos , Índice de Placa Dentária , Peri-Implantite/terapiaRESUMO
OBJECTIVE: This study aimed to evaluate the effect of fence tray matching care (FTMC) in bracket bonding by measuring excess adhesive, as well as linear and angular deviations, and by comparing it with the half-wrapped tray (HWT). MATERIALS AND METHODS: An intraoral scanner was used to acquire data on the maxillary dental arch of a patient with periodontitis.Furthermore, 20 maxillary dental arch models were 3D printed. Using 3Shape, PlastyCAD software, and 3D printing technology, 10 FTMC (method I) and HWT (method II) were obtained. By preoperative preparation, intraoperative coordination, and postoperative measurement, the brackets were transferred from the trays to the 3D-printed maxillary dental arch models. Additionally, the bracket's excess adhesive as well as linear and angular deviations were measured, and the differences between the two methods were analyzed. RESULTS: Excess adhesive was observed in both methods, with FTMC showing less adhesive (P< 0.001), with a statistical difference. Furthermore, HWT's vertical, tip and torque, which was significantly greater than FTMC (P< 0.05), with no statistical difference among other respects. The study data of incisors, canines, and premolars, showed that the premolars had more adhesive residue and were more likely to have linear and angular deviations. CONCLUSIONS: The FTMC had higher bracket bonding effect in comparison to HWT, and the adhesive residue, linear and angular deviations are smaller. The fence tray offers an intuitive view of the precise bonding of the bracket, and can remove excess adhesive to prevent white spot lesions via care, providing a different bonding method for clinical applications.
Assuntos
Colagem Dentária , Braquetes Ortodônticos , Humanos , Colagem Dentária/métodos , Técnicas In Vitro , Modelos Dentários , Adesivos , Impressão Tridimensional , Cimentos Dentários , Arco DentalRESUMO
With CA16, enterovirus-71 is the causative agent of hand foot and mouth disease (HFMD) which occurs mostly in children under 5 years-old and responsible of several outbreaks since a decade. Most of the time, HFMD is a mild disease but can progress to severe complications such as meningitis, brain stem encephalitis, acute flaccid paralysis (AFP) and even death; EV71 has been identified in all severe cases. Therefore, it is actually one of the most public health issues that threatens children's life. [Formula: see text] is a protease which plays important functions in EV71 infection. To date, a lot of [Formula: see text] inhibitors have been tested but none of them has been approved yet. Therefore, a drug screening is still an utmost importance in order to treat and/or prevent EV71 infections. This work highlights the EV71 life cycle, [Formula: see text] functions and [Formula: see text] inhibitors recently screened. It permits to well understand all mechanisms about [Formula: see text] and consequently allow further development of drugs targeting [Formula: see text]. Thus, this review is helpful for screening of more new [Formula: see text] inhibitors or for designing analogues of well known [Formula: see text] inhibitors in order to improve its antiviral activity.
Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Enterovirus Humano A/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Doença de Mão, Pé e Boca/tratamento farmacológico , RNA Viral/antagonistas & inibidores , Animais , Antivirais/isolamento & purificação , Criança , Avaliação Pré-Clínica de Medicamentos/tendências , Enterovirus Humano A/enzimologia , Inibidores Enzimáticos/isolamento & purificação , Doença de Mão, Pé e Boca/complicações , Doença de Mão, Pé e Boca/virologia , Humanos , Camundongos , Inibidores da Síntese de Ácido Nucleico/farmacologia , FilogeniaRESUMO
BACKGROUND/AIMS: Reversion-inducing cysteine-rich protein with kazal motifs (RECK) is a novel tumor suppressor gene that is critical for regulating tumor cell invasion and metastasis. The expression of RECK is dramatically down-regulated in human cancers. Harmine, a tricyclic compound from Peganum harmala, has been shown to have potential anti-cancer activity. METHODS: Cell proliferation assay (CCK-8 cell viability assay), cell cycle analysis (detection by flow cytometry), apoptosis staining assay (TUNEL staining), cell migration assay and invasion assay (transwell assay) were carried out to investigate the Harmine's efficacy on non-small cell lung cancer (NSCLC) cells in vitro. A549-luciferase cell orthotropic transplantation xenograft mouse model was used to determine the effect of Harmine treatment on NSCLC in vivo. Western blotting analysis of cell growth and metastasis related signal pathways was conducted to investigate the molecular mechanism of Harmine's inhibitory effect on NSCLC. RESULTS: Harmine treatment effectively inhibited cell proliferation and induced the G1/S cell cycle arrest of NSCLC cells. Further study proved that Harmine treatment led to apoptosis induction. Furthermore, treatment with NSCLC cells with Hamine resulted in decreased cell migration and cell invasion in vitro. More importantly, Harmine treatment significantly suppressed the NSCLC tumor growth and metastasis in mouse xenograft model in vivo. Mechanistically, in Harmine-treated NSCLC cells, RECK expression and its downstream signaling cascade were dramatically activated. As a consequence, the expression level of MMP-9 and E-cadherin were significantly decreased. CONCLUSION: These findings identify Harmine as a promising activator of RECK signaling for metastatic NSCLC treatment.
Assuntos
Antineoplásicos Fitogênicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Harmina/toxicidade , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proteínas Ligadas por GPI/agonistas , Harmina/química , Harmina/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Nus , Peganum/química , Peganum/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transplante HeterólogoRESUMO
BACKGROUND: The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. METHODS: Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata) on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC) cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol's inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol's efficacy in vivo. RESULTS: Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. CONCLUSION: These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/farmacologia , Proliferação de Células/efeitos dos fármacos , Lignanas/farmacologia , Microtúbulos/metabolismo , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/química , Compostos de Bifenilo/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Lignanas/química , Lignanas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Magnolia/química , Magnolia/metabolismo , Masculino , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transplante Heterólogo , Proteína Supressora de Tumor p53/metabolismoRESUMO
Microtubule plays many different essential roles in the process of tumorigenesis in many eukaryotes, and targeting mitotic progression by disturbing microtubule dynamics is used as a common strategy for cancer treatment. Microtubule-targeted drugs, including paclitaxel and Vinca alkaloids, were previously considered to work primarily by increasing or decreasing the cellular microtubule mass. The tubulin/microtubule system, which is an integral component of the cytoskeleton, is a therapeutic target for prostate cancer. In this study, we found a novel synthetic compound, 8-fluoro-N-phenylacetyl-1, 3, 4, 9-tetrahydro-ß-carboline (LG308), which disrupted the microtubule organization via inhibiting the polymerization of microtubule in PC-3M and LNCaP prostate cancer cell lines. Further study proved that LG308 induced mitotic phase arrest and inhibited G2/M progression significantly in LNCaP and PC-3M cell lines in a dose-dependent manner, and these were associated with the upregulation of cyclin B1 and mitotic marker MPM-2 and the dephosphorylation of cdc2. Besides, the cell proliferation and colony formation of PC-3M and LNCaP cells were effectively inhibited by LG308. Furthermore, LG308 induced apoptosis and cell death in PC-3M and LNCaP cell lines in vitro. In vivo, LG308 dramatically suppressed the growth and metastasis of prostate cancer in both xenograft and orthotopic models. All these data indicate that LG308 is a promising anticancer candidate with antimitotic activity for the treatment of prostate cancer.
Assuntos
Antineoplásicos/farmacologia , Microtúbulos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B1/biossíntese , Relação Dose-Resposta a Droga , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/metabolismo , Fase G2/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Mitose/efeitos dos fármacos , Índice Mitótico , Neoplasias da Próstata/patologia , Moduladores de Tubulina/farmacologia , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: To explore the application effect of "quality control circle" activity in postoperative nursing of elderly dental implants. METHODS: From January 2022 to December 2022, a total of 60 elderly patients were selected and divided into an experimental group and a control group, with 30 cases in each group using the random number table method. The elderly patients with dental implants received postoperative care under the supervision of a quality control circle. The control group was treated with conventional nursing methods. The success rate, postoperative complications, and satisfaction of the 2 groups were compared. RESULTS: By comparing the postoperative care effect of the 2 groups of patients, the satisfaction of the experimental group and the control group was 93.3% and 73.3%, respectively, showing the satisfaction of the experimental group was higher than the control group (Pâ <â .05). The planting success rate of the experimental and control groups were 96.7% and 66.7%, respectively, with the experimental group outperforming the control group (Pâ <â .05). The proportion of complications in the experimental was found to be fewer (6.7%) than in the control group (33.3%) (Pâ <â .05). CONCLUSION: Quality control circle activities can effectively improve the success rate of dental implants, reduce the occurrence of postoperative complications, improve patient satisfaction, and help medical staff in providing better treatment for patients.
Assuntos
Implantes Dentários , Humanos , Idoso , Satisfação do Paciente , Controle de Qualidade , Período Pós-Operatório , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controleRESUMO
BACKGROUND: Although AMP-activated protein kinase (AMPK) has been extensively studied in cellular processes, the understanding of its substrates, downstream functions, contributions to cell fate and colorectal cancer (CRC) progression remains incomplete. PURPOSE: The aim of this study was to investigate the effects and mechanisms of naringenin on CRC. METHODS: The biological and cellular properties of naringenin and its anticancer activity were evaluated in CRC. In addition, the effect of combined treatment with naringenin and 5-fluorouracil on tumor growth in vitro and in vivo was evaluated. RESULTS: The present study found that naringenin inhibits the proliferation of CRC and promote its apoptosis. Compared with the naringenin group, naringenin combined with 5-fluorouracil had significant effect on inhibiting cell proliferation and promoting its apoptosis. It is showed that naringenin activates AMPK phosphorylation and mitochondrial fusion in CRC. Naringenin combined with 5-fluorouracil significantly reduces cardiotoxicity and liver damage induced by 5-fluorouracil in nude mice bearing subcutaneous CRC tumors, and attenuates colorectal injuries in azoxymethane/DSS dextran sulfate (AOM/DSS)-induced CRC. The combination of these two drugs alters mitochondrial function by increasing reactive oxygen species (ROS) levels and decreasing the mitochondrial membrane potential (MMP), thereby stimulating AMPK/mTOR signaling. Mitochondrial dynamics are thereby regulated by activating the AMPK/p-AMPK pathway, and mitochondrial homeostasis is coordinated through increased mitochondrial fusion and reduced fission to activate apoptosis in cancer cells. CONCLUSIONS: Our data suggest that naringenin is important for inhibiting CRC proliferation, possibly through the AMPK pathway, to regulate mitochondrial function and induce apoptosis in CRC.
Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Colorretais , Flavanonas , Fluoruracila , Mitocôndrias , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Flavanonas/farmacologia , Fluoruracila/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Griseofulvin (GF), which is mainly extracted from Penicillium griseofulvum, is a heat-resistant, chlorine-containing non-polyene antifungal antibiotic. Previous research shows that GF has a variety of pharmacological effects, such as anti-inflammatory, antifungal, antiviral, and antitumor effects. In recent years, GF has received extensive attention for its antitumor effects as a natural compound, offering a low price, a wide range of uses, and other beneficial characteristics. However, no comprehensive review of GF pharmacological activity in tumors has been published so far. In order to fully elucidate the antitumor activities of GF, this review focuses on the antitumor potential and toxicity of GF and its derivatives, based on a literature search using PubMed, Web of Science, and other databases, to lay a good foundation for further research of GF and the development of new drugs for antitumor activities.
RESUMO
Breast cancer is the most common malignancy in the world, particularly affecting female cancer patients. Enhancing the therapeutic strategies for breast cancer necessitates identifying molecular drug targets that effectively eliminate tumor cells. One of these prominent targets is the forkhead and O3a class (FOXO3a), a member of the forkhead transcription factor subfamily. FOXO3a plays a pivotal role in various cellular processes, including apoptosis, proliferation, cell cycle regulation, and drug resistance. It acts as a tumor suppressor in multiple cancer types, although its specific role in cancer remains unclear. Moreover, FOXO3a shows promise as a potential marker for tumor diagnosis and prognosis in breast cancer patients. In addition, it is actively influenced by common anti-breast cancer drugs like paclitaxel, simvastatin, and gefitinib. In breast cancer, the regulation of FOXO3a involves intricate networks, encompassing post-translational modification post-translational regulation by non-coding RNA (ncRNA) and protein-protein interaction. The specific mechanism of FOXO3a in breast cancer urgently requires further investigation. This review aims to systematically elucidate the role of FOXO3a in breast cancer. Additionally, it reviews the interaction of FOXO3a and its upstream and downstream signaling pathway-related molecules to uncover potential therapeutic drugs and related regulatory factors for breast cancer treatment by regulating FOXO3a.
RESUMO
Isorhamnetin (ISO) is a phenolic compound belonging to flavonoid family, showcasing important in vitro pharmacological activities such as antitumor, anti-inflammation, and organ protection. ISO is predominantly extracted from Hippophae rhamnoides L. This plant is well-known in China and abroad because of its "medicinal and food homologous" characteristics. As a noteworthy natural drug candidate, ISO has received considerable attention in recent years owing to its low cost, wide availability, high efficacy, low toxicity, and minimal side effects. To comprehensively elucidate the multiple biological functions of ISO, particularly its antitumor activities and other pharmacological potentials, a literature search was conducted using electronic databases including Web of Science, PubMed, Google Scholar, and Scopus. This review primarily focuses on ISO's ethnopharmacology. By synthesizing the advancements made in existing research, it is found that the general effects of ISO involve a series of in vitro potentials, such as antitumor, protection of cardiovascular and cerebrovascular, anti-inflammation, antioxidant, and more. This review illustrates ISO's antitumor and other pharmacological potentials, providing a theoretical basis for further research and new drug development of ISO.
RESUMO
OBJECTIVE: To compare different nasal cavity nursing methods on mechanically ventilated patients. METHODS: According to acute physiology and chronic health evaluation (APACHEII), 615 cases of mechanically ventilated patients were divided into group A, group B and group C by stratified random method. Traditional oral nursing plus aspirating secretions from oral cavity and nasal cavity q6h were done in group A. Based on methods in group A, normal saline was used for cleaning nasal cavity in group B. Besides the methods in group A, atomizing nasal cleansing a6h was also used in group C. Incidence rate of Ventilator-Associated Pneumonia (VAP) and APACHE II scores after administrating were compared. The correlation between APACHE II score and outcomes was analyzed by Spearman-rank correlation. RESULTS: In group A, incidence of VAP was 36.76%, group B was 30.24%, group C was 20.38%, and the difference was statistically significant. APACHE II scores in group C were significantly lower compared with group A and B. APACHE II score was negatively correlated with clinical outcomes. CONCLUSIONS: For mechanically ventilated patients, nasal nursing can't be ignored and the new atomizing nasal cleaning is an effective method for VAP prevention.
RESUMO
Triple-negative breast cancer (TNBC) is one of the most malignant breast tumors for its poor prognosis and high tumor recurrence. It is urgent to develop new strategy or effective agents to overcome resistance and improve therapeutic effectiveness. Boron-dipyrromethene (BODIPY) based photosensitizers possess exciting photophysical features suitable for theranostic applications, namely, photodynamic therapy (PDT). We have designed a luminescent monofunctional platinum(II) complex with BODIPY derivative, namely I2BC-Pt, as novel high PDT agent against triple negative breast cancer (TNBC). The di-iodinated BODIPY complex I2BC-Pt showed excellent PDT effect against TNBC cells in green light (520 nm) giving IC50 values of 0.11-0.13 µM in MDA-MB-231 and MDA-MB-468 cells. I2BC-Pt predominately aggregated in the mitochondria of MDA-MB-231 cells and emitted green fluorescence. Besides, the anticancer mechanism studies demonstrated that I2BC-Pt could help DNA repair through attenuating RAD51, FoxM1 and BRCA1/2, and induce p53-mediated apoptosis of TNBC cells. Taken together, I2BC-Pt could be potentially developed as a BODIPY-based photosensitizers for TNBC therapy.
Assuntos
Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Platina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Boro , Linhagem Celular TumoralRESUMO
Cancer is a borderless global health challenge that continues to threaten human health. Studies have found that oxidative stress (OS) is often associated with the etiology of many diseases, especially the aging process and cancer. Involved in the OS reaction as a key transcription factor, Nrf2 is a pivotal regulator of cellular redox state and detoxification. Nrf2 can prevent oxidative damage by regulating gene expression with antioxidant response elements (ARE) to promote the antioxidant response process. OS is generated with an imbalance in the redox state and promotes the accumulation of mutations and genome instability, thus associated with the establishment and development of different cancers. Nrf2 activation regulates a plethora of processes inducing cellular proliferation, differentiation and death, and is strongly associated with OS-mediated cancer. What's more, Nrf2 activation is also involved in anti-inflammatory effects and metabolic disorders, neurodegenerative diseases, and multidrug resistance. Nrf2 is highly expressed in multiple human body parts of digestive system, respiratory system, reproductive system and nervous system. In oncology research, Nrf2 has emerged as a promising therapeutic target. Therefore, certain natural compounds and drugs can exert anti-cancer effects through the Nrf2 signaling pathway, and blocking the Nrf2 signaling pathway can reduce some types of tumor recurrence rates and increase sensitivity to chemotherapy. However, Nrf2's dual role and controversial impact in cancer are inevitable consideration factors when treating Nrf2 as a therapeutic target. In this review, we summarized the current state of biological characteristics of Nrf2 and its dual role and development mechanism in different tumor cells, discussed Keap1/Nrf2/ARE signaling pathway and its downstream genes, elaborated the expression of related signaling pathways such as AMPK/mTOR and NF-κB. Besides, the main mechanism of Nrf2 as a cancer therapeutic target and the therapeutic strategies using Nrf2 inhibitors or activators, as well as the possible positive and negative effects of Nrf2 activation were also reviewed. It can be concluded that Nrf2 is related to OS and serves as an important factor in cancer formation and development, thus provides a basis for targeted therapy in human cancers.
RESUMO
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor with high mortality rates and invariably poor prognosis due to its limited clinical treatments. There is an urgent need to develop new therapeutic drugs for GBM treatment. As a natural prenylated chalcone compound, Isobavachalcone (IBC)'s favorable pharmacological activities have been widely revealed. However, potential inhibitory effects of IBC on GBM have not been explored. In the present study, we aimed to detect the effects of IBC on GBM and clarify its anti-GBM mechanisms for the first time. It was observed that IBC could inhibit GBM cell proliferation, migration, and invasion in vitro and prevent tumor growth without any significant drug toxicity in both subcutaneous and orthotopic GBM xenograft tumor models in vivo. Mechanistically, IBC may target NOD-like receptor family pyrin domain-containing 3 (NLRP3) transcription factor estrogen receptor α (ESR1 gene) by network pharmacology and molecular docking analysis. Experimentally, IBC alleviated NLRP3 inflammasome-related pyroptosis and inflammation, arrested cell cycle at G1 phase, and induced mitochondria-dependent apoptosis in GBM cells. IBC's inhibition on NLRP3 could be rescued by the NLRP3 antagonist CY-09 both in vitro and in vivo. These results indicate that IBC is a potential therapeutic drug against GBM and provide a new insight into GBM treatment.
Assuntos
Chalconas , Glioblastoma , Apoptose , Chalconas/farmacologia , Chalconas/uso terapêutico , Receptor alfa de Estrogênio , Glioblastoma/genética , Humanos , Inflamassomos , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Fatores de TranscriçãoRESUMO
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/ß-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
RESUMO
Rapid metabolism differentiates cancer cells from normal cells and relies on anaplerotic pathways. However, the mechanisms of anaplerosis-associated enzymes are rarely understood. The lack of potent and selective antimetabolism drugs restrains further clinical investigations. A small molecule ZY-444 ((N 4-((5-(4-(benzyloxy)phenyl)-2-thiophenyl)methyl)-N 2-isobutyl-2,4-pyrimidinediamine) is discovered to inhibit cancer cell proliferation specifically, having potent efficacies against tumor growth, metastasis, and recurrence. ZY-444 binds to cellular pyruvate carboxylase (PC), a key anaplerotic enzyme of the tricarboxylic acid cycle, and inactivates its catalytic activity. PC inhibition suppresses breast cancer growth and metastasis through inhibiting the Wnt/ß-catenin/Snail signaling pathway. Lower PC expression in patient tumors is correlated with significant survival benefits. Comparative profiles of PC expression in cancer versus normal tissues implicate the tumor selectivity of ZY-444. Overall, ZY-444 holds promise therapeutically as an anti-cancer metabolism agent.
RESUMO
Background: Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), a co-activator of estrogen receptors alpha, was confirmed to be directly associated with the oncogenic process of multiple cancers, especially hormone-dependent cancers. The purpose of our research was to explore the biological function, clinical significance, and therapeutic targeted value of PELP1 in gastric cancer (GC). Methods: The expression status of PELP1 in GC cell lines or tissues was analyzed through bioinformatics data mining. Thirty-six GC tissue chip was applied to demonstrate the results of bioinformatics data mining assayed by immunohistochemical method. The expression status of PELP1 in GC cell lines was also analyzed using western blot. Correlation analysis between PELP1 expression and clinicopathological parameter was performed. Kaplan-Meier survival analysis was applied to analyze the relationship between PELP1 expression and total survival time. Three pairs of siRNA were designed to silence the expression of PELP1 in GC. After PELP1 was silenced by siRNA or activated by saRNA, the growth, plate colony formation, migration and invasion ability of the GC cell or normal gastric epithelium cell line was tested in vitro. Cell cycle was tested by flow cytometry. Nude mice xenograft experiment was performed after PELP1 was silenced. The downstream molecular pathway regulated by PELP1 was explored. Molecular docking tool was applied to combine chlorpromazine with PELP1. The inhibitory effect of chlorpromazine in GC was assayed, then it was tested whether PELP1 was a therapeutic target of chlorpromazine in GC. Results: PELP1 expression was elevated in GC cell lines and clinical GC tissue samples. PELP1 silence by siRNA compromised the malignant traits of GC. PELP1 expression positively correlated with tumor invasion depth, lymph node metastasis, tissue grade, TNM stage, but had no correlation with patient age, sex, tumor size, and tumor numbers. Kaplan-Meier survival analysis revealed high PELP1 expression had a shorter survival period in GC patients after follow-up. Q-PCR and western blot revealed PELP1 suppression in GC decreased expression of the c-Src-PI3K-ERK pathway. It was also implied that chlorpromazine (CPZ) can inhibit the malignant traits of GC and downregulate the expression of PELP1. Conclusions: In a word, PELP1 is an oncogene in gastric cancer and c-Src-PI3K-ERK pathway activation may be responsible for its tumorigenesis, PELP1 may be a potential therapeutic target of chlorpromazine in GC.
RESUMO
PURPOSE: Vascular endothelial growth factor (VEGF) signal transduction mainly depends on its binding to VEGF receptor 2 (VEGFR-2). VEGF downstream signaling proteins mediate several of its effects in cancer progression, including those on tumor growth, metastasis, and blood vessel formation. The activation of VEGFR-2 signaling is a hallmark of and is considered a therapeutic target for breast cancer. Here, we report a study of the regulation of the VEGFR-2 signaling pathway by a small molecule, isomangiferin. METHODS: A human breast cancer xenograft mouse model was used to investigate the efficacy of isomangiferin in vivo. The inhibitory effect of isomangiferin on breast cancer cells and the underlying mechanism were examined in vitro. RESULTS: Isomangiferin suppressed tumor growth in xenografts. In vitro, isomangiferin treatment inhibited cancer cell proliferation, migration, invasion, and adhesion. The effect of isomangiferin on breast cancer growth was well coordinated with its suppression of angiogenesis. A rat aortic ring assay revealed that isomangiferin significantly inhibited blood vessel formation during VEGF-induced microvessel sprouting. Furthermore, isomangiferin treatment inhibited VEGF-induced proliferation of human umbilical vein endothelial cells and the formation of capillary-like structures. Mechanistically, isomangiferin induced caspase-dependent apoptosis of breast cancer cells. Furthermore, VEGF-induced activation of the VEGFR-2 kinase pathway was down-regulated by isomangiferin. CONCLUSION: Our findings demonstrate that isomangiferin exerts anti-breast cancer effects via the functional inhibition of VEGFR-2. Pharmaceutically targeting VEGFR-2 by isomangiferin could be an effective therapeutic strategy for breast cancer.