Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 114: 105096, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147878

RESUMO

A new class of antibacterial ethanol-bridged purine azole hybrids as potential dual-targeting inhibitors was developed. Bioactivity evaluation showed that some of the target compounds had prominent antibacterial activity against the tested bacteria, notably, metronidazole hybrid 3a displayed significant inhibitory activity against MRSA (MIC = 6 µM), and had no obvious toxicity on normal mammalian cells (RAW 264.7). In addition, compound 3a also did not induce drug resistance of MRSA obviously, even after fifteen passages. Molecular modeling studies showed that the highly active molecule 3a could insert into the base pairs of topoisomerase IA-DNA as well as topoisomerase IV-DNA through hydrogen bonding. Furthermore, a preliminary study on the antibacterial mechanism revealed that the active molecule 3a could rupture the bacterial membrane of MRSA and insert into MRSA DNA to block its replication, thus possibly exhibiting strong antibacterial activity. These results strongly indicated that the highly active hybrid 3a could be used as a potential dual-targeting inhibitor of MRSA for further development of valuable antimicrobials.


Assuntos
Antibacterianos/farmacologia , Azóis/farmacologia , Etanol/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Purinas/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Azóis/química , Relação Dose-Resposta a Droga , Etanol/química , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Purinas/química , Células RAW 264.7 , Relação Estrutura-Atividade
2.
J Hazard Mater ; 441: 129829, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36058186

RESUMO

Low-cost and sustainable superwetting materials are urgently required for oily wastewater treatment. Many poly(vinylidene fluoride) (PVDF)-based materials have been designed for oil-water separation. However, their fabrication processes frequently require toxic organic solvents and high-cost materials (e.g., carbon tubes and graphene). In this study, a highly porous and superhydrophobic bamboo powders (BP)-enhanced PVDF foam (SBPF) was fabricated via an organic solvent-free process. The SBPF exhibits efficient adsorption and recovery for various oils and organic solvents. Moreover, the SBPF shows high adsorption and separation performance under ultraviolet exposure and turbulent environments. It can also be used for water-in-oil emulsions separation, with a high separation efficiency more than 99.3 % under gravity. Interestingly, the amphiphilic PVDF-BP foam (ABPF) shows underwater superoleophobicity and underoil superhydrophobicity after delignification of SBPF. Owing to the conversion of wettability, it presents a high performance in treatment of both surfactant-stabilied water-in-oil and oil-in-water emulsions with the high separation efficiency achieving more than 99.6 % and 99.5 % respectively under gravity. In addition, the ABPF shows a high separation performance even after ten cycles. Hence, this fabricated organic solvent-free foams are promising candidates for sustainable on-demand separation of oils or organic solvents and water in complex environments.


Assuntos
Grafite , Polímeros de Fluorcarboneto , Óleos/química , Polivinil , Pós , Solventes , Tensoativos , Água/química
3.
Adv Mater ; 34(41): e2204147, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35900291

RESUMO

Currently, extensive research efforts are being devoted to suppressing the shuttle effect of polysulfides. The uncontrollable deposition of insulating Li2 S onto the surface of sulfur host materials dramatically inhibits the continuous reduction of polysulfides in lithium-sulfur (Li-S) batteries. Herein, N,B co-doped hollow carbon microspheres embedded with dense FeSe-MnSe heterostructures and abundant Se vacancies (FeSe-MnSe/NBC) are rationally designed and synthesized via a facile hydrothermal reaction using ionic liquids as dopants. The introduction of abundant heterostructures subtly guides Li2 S nucleation and deposition in 3D frameworks, thus avoiding the formation of the Li2 S passivation layer and allowing for continuous Li+ diffusion and subsequent nucleation of Li2 S. Owing to these beneficial features, Li-S batteries comprising an FeSe-MnSe/NBC electrode exhibit significantly improved performance, including a high initial capacity of 1334 mAh g-1 at 0.2 C and ultralong cycle stability with a low capacity fading rate of 0.029% cycle-1 over 1000 cycles at 1.0 C. Remarkably, the FeSe-MnSe/NBC pouch cell delivers a considerable areal capacity of 3.6 mAh cm-2 at 0.1 C. This study provides valuable insight into heterostructures and Se vacancies for developing practical Li-S batteries.

4.
J Mater Chem B ; 10(8): 1226-1235, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35112697

RESUMO

Ti3C2Tx MXene is a new type of two-dimensional material with good biocompatibility and a good photothermal effect, and shows great potential in cancer treatment. In this study, few-layer ionic liquid (IL)-Ti3C2Tx MXene nanosheets were synthesized using IL stripping technology, which have high chemical stability, and allow photoacoustic imaging and synergistic photothermal/chemotherapy of cancer. Under 808 nm laser irradiation, the nanosheets have strong absorption in the near-infrared region, and high photothermal conversion efficiency (∼63.91%). Using DOX as a model drug, the IL-Ti3C2Tx MXene@DOX nanosheets exhibited high drug loading capacity and pH-/photosensitivity, which will further promote the drug release of the nanosheets in an acidic tumor microenvironment and under 808 nm laser irradiation. In vitro and in vivo experiments showed that IL-Ti3C2Tx MXene@DOX has good biological safety, allows remarkable photoacoustic imaging, and can effectively kill cancer cells with synergistic photothermal/chemotherapy. Therefore, IL-Ti3C2Tx MXene nanosheets are expected to provide powerful and useful two-dimensional nanoplatforms for various biomedical applications.


Assuntos
Líquidos Iônicos , Neoplasias , Técnicas Fotoacústicas , Liberação Controlada de Fármacos , Humanos , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Titânio , Microambiente Tumoral
5.
Nanoscale ; 13(24): 10849-10861, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34114593

RESUMO

Lithium-sulfur (Li-S) batteries generally suffer from a serious "shuttle effect" during the charging/discharging process, resulting in the loss of active components and sluggish redox reaction kinetics that hinder the cycle life and rate performance of the battery. To address this, CoSe/C hollow structures (CoSe/C HSs) were prepared via a simple hydrothermal strategy and used as a sulfur host for Li-S batteries. The battery with CoSe/C HSs exhibited a high initial specific discharge capacity of 1405 mA h g-1 with a coulombic efficiency of 99.8% at 0.1C. Additionally, S@CoSe/C HS cathodes with a high sulfur loading of 5.1 mg cm-2 delivered a considerable specific discharge capacity of 1256.1 mA h g-1 and maintained a high capacity of 1120 mA h g-1 after 100 cycles with a capacity decay rate of 0.11% per cycle at 0.1C. The unique raspberry-like structure of CoSe/C HSs prevents polysulfides from escaping the cathode host via both physical containment and the formation of Co-S and Se-Li chemical bonds, and it also enhances the polysulfide redox kinetics. Furthermore, the peculiar raspberry-like structure can withstand volume changes during charging/discharging to better protect the cathode.

6.
Sci Total Environ ; 800: 149558, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391146

RESUMO

The unique features of bioresources such as cellulose and bio-wax include renewability, biodegradability, low cost, and abundance on Earth. Therefore, their efficient use is essential for a sustainable economy. Herein, we report a facile method for the surface modification of pretreated cotton with a bio-wax emulsion in water and Fe3O4 nanoparticles to fabricate a green, durable, magnetic, and superhydrophobic/superoleophilic absorbent for the sorption of oil and organic solvents. Magnetic superhydrophobic cotton (MSC) was successfully prepared via a simple two-step dip-coating method without using any toxic organic reagents. The as-prepared MSC was used to selectively absorb various types of oils and organic solvents up to approximately 20-50 times its own weight. Furthermore, it exhibited a stable magnetic responsivity and high reusability in oil/water separation cycles. In addition, the removal and collection of the absorbed oil/organic solvents were easily achieved with distillation and a vacuum air pump. Moreover, the as-prepared MSC was used in a heavy oil/water gravity-separation filter system and in the continuous collection of a light oil from water surfaces using a pump. The proposed concept may provide a green and sustainable strategy for fabricating superhydrophobic/superoleophilic materials for efficient sorption of oils and organic solvents.


Assuntos
Óleos , Água , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Magnéticos , Solventes
7.
RSC Adv ; 9(11): 5978-5986, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35517281

RESUMO

The concept of a solid catalyst coated with a thin ionic liquid layer (SCILL) was applied to the stereoselective hydrogenation of α-pinene. Nickel, a non-noble metal, was supported on a discarded fluid catalytic cracking catalyst (DF3C) and then modified with different loadings of the ionic liquid 1-ethanol-3-methylimidazolium tetrafluoroborate ([C2OHmim][BF4]). The resulting catalysts showed a range of conversions and selectivities for the hydrogenation of α-pinene. The SCILL catalysts afforded cis-pinane with high selectivity and their activity depended on the ionic liquid loading. For an ionic liquid loading of 10 wt%, although the catalytic activity was suppressed, the selectivity and conversion could reach above 98% and 99%, respectively. In addition, the catalyst remained stable after 13 runs and the activity was almost unchanged with the conversion maintained at approximately 99%. Thus, the ionic liquid layer not only improved the selectivity for cis-pinane but also protected the active site of the catalyst and prolonged the service lifetime of the catalyst. The SCILL catalytic system provides an example of an ionic liquid catalytic system which eliminates organic solvents from the catalytic process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA