Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2403743, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973074

RESUMO

Photocatalytic hydrogen peroxide production from water and oxygen offers a clean and sustainable alternative to the conventional energy-intensive anthraquinone oxidation method. Compared to powdered covalent triazine frameworks (CTFs), the film morphology of CTFs provides better connectivity in 2D, yielding several advantages: more efficient connections between active sites, reduced electron-hole pair recombination, increased resistance to superoxide radical induced corrosion, and decreased light scattering. Leveraging these benefits, it has incorporated dual active sites for both the oxygen reduction reaction (ORR) and the water oxidation reaction (WOR) into a CTF film system. This dual-active CTF film demonstrated an exceptional hydrogen peroxide production rate of 19 460 µmol h⁻¹ m⁻2 after 1 h and 17 830 µmol h⁻¹ m⁻2 after 5 h under visible light irradiation (≥420 nm) without the need for sacrificial agents.

2.
Angew Chem Int Ed Engl ; : e202413131, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078812

RESUMO

The development of artificial photocatalysts to convert CO2 into renewable fuels and H2O into O2 is a complex and crucial task in the field of photosynthesis research. The current challenge is to enhance photogenerated charge separation, as well as to increase the oxidation capability of materials. Herein, a molecular junction-type porphyrin-based crystalline photocatalyst (Ni-TCPP-TPyP) was successfully self-assembled by incorporating a nickel porphyrin complex as a reduction site and pyridyl porphyrin as an oxidation site via hydrogen bonding and π-π stacking interactions. The resulting material has a highly crystalline structure, and the formation of inherent molecular junctions can accelerate photogenerated charge separation and transport. Thus, Ni-TCPP-TPyP achieved an excellent CO production rate of 309.3 µmol g-1 h-1 (selectivity, ~100%) without the use of any sacrificial agents, which is more than ten times greater than that of single-component photocatalyst (Ni-TCPP) and greater than that of the most organic photocatalysts. The structure-function relationship was investigated by femtosecond transient absorption spectroscopy and density functional theory calculations. Our work provides new insight for designing efficient artificial photocatalysts, paving the way for the development of clean and renewable fuels through the conversion of CO2 using solar energy.

3.
Angew Chem Int Ed Engl ; 63(22): e202403926, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414401

RESUMO

The solar-driven photocatalytic production of hydrogen peroxide (H2O2) from water and oxygen using semiconductor catalysts offers a promising approach for converting solar energy into storable chemical energy. However, the efficiency of photocatalytic H2O2 production is often restricted by the low photo-generated charge separation, slow surface reactions and inadequate stability. Here, we developed a mixed-linker strategy to build a donor-acceptor-acceptor (D-A-A) type covalent organic framework (COF) photocatalyst, FS-OHOMe-COF. The FS-OHOMe-COF structure features extended π-π conjugation that improves charge mobility, while the introduction of sulfone units not only as active sites facilitates surface reactions with water but also bolsters stability through increased interlayer forces. The resulting FS-OHOMe-COF has a low exciton binding energy, long excited-state lifetime and high photo-stability that leads to high performance for photocatalytic H2O2 production (up to 1.0 mM h-1) with an H2O2 output of 19 mM after 72 hours of irradiation. Furthermore, the catalyst demonstrates high stability, which sustained activity over 192 hours of photocatalytic experiment.

4.
Inorg Chem ; 60(7): 4347-4351, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33739094

RESUMO

In this Communication, we illustrate the influence of organic ligands on magnetic structure and behavior by employing a mixed-valence Lindqvist-type hexavanadate as a research platform. Through covalently attaching to different halogen-containing organic ligands, the derived hybrid materials have different magnetism compared to their parent structure. Single-crystal X-ray analyses show that the introduction of organic ligands can modify the crystal packing manners of the derivatives, leading to further changes of the interaction between magnetic units. This work demonstrates that organic functionalization can remarkably affect the magnetism of polyoxometalates by adjusting the distance and location of the magnetic fractions.

5.
ChemSusChem ; 16(20): e202300759, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37365972

RESUMO

Photocatalytic hydrogen evolution through water splitting offers a promising way to convert solar energy into chemical energy. Covalent triazine frameworks (CTFs) are ideal photocatalysts owing to its exceptional in-plane π-conjugation, high chemical stability, and sturdy framework structure. However, CTF-based photocatalysts are typically in powder form, which presents challenges in catalyst recycling and scale-up applications. To overcome this limitation, we present a strategy for producing CTF films with excellent hydrogen evolution rate that are more suitable for large-scale water splitting due to their ease of separation and recyclability. We developed a simple and robust technique for producing CTF films on glass substrates via in-situ growth polycondensation, with thicknesses adjustable from 800 nm to 27 µm. These CTF films exhibit exceptional photocatalytic activity, with the hydrogen evolution reaction (HER) performance reaching as high as 77.8 mmol h-1 g-1 and 213.3 mmol m-2 h-1 with co-catalyst Pt under visible light (≥420 nm). Additionally, they demonstrate good stability and recyclability, further highlighting their potential in green energy conversion and photocatalytic devices. Overall, our work presents a promising approach for producing CTF films suitable for a range of applications and paves the way for further developments in this field.

6.
Nat Commun ; 14(1): 2891, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210380

RESUMO

The use of light to regulate photocatalyzed reversible deactivation radical polymerization (RDRP) under mild conditions, especially driven by broadband light or sunlight directly, is highly desired. But the development of a suitable photocatalyzed polymerization system for large-scale production of polymers, especially block copolymers, has remained a big challenge. Herein, we report the development of a phosphine-based conjugated hypercrosslinked polymer (PPh3-CHCP) photocatalyst for an efficient large-scale photoinduced copper-catalyzed atom transfer radical polymerization (Cu-ATRP). Monomers including acrylates and methyl acrylates can achieve near-quantitative conversions under a wide range (450-940 nm) of radiations or sunlight directly. The photocatalyst could be easily recycled and reused. The sunlight-driven Cu-ATRP allowed the synthesis of homopolymers at 200 mL from various monomers, and monomer conversions approached 99% in clouds intermittency with good control over polydispersity. In addition, block copolymers at 400 mL scale can also be obtained, which demonstrates its great potential for industrial applications.

7.
Chem Commun (Camb) ; 58(58): 8121-8124, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35771189

RESUMO

Bipyridine-containing covalent triazine framework (CTF-Bpy) was used to prove that the single site distribution of Co2+ was possible. The Co2+-loaded CTF-Bpy-Co produced 120 µmol CO with a selectivity of 83.8% over 10 h of irradiation (>420 nm). This work highlights the promising potential of single metal sites loaded with CTFs for photocatalytic CO2 reduction.

8.
Nat Commun ; 12(1): 6596, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782615

RESUMO

Covalent triazine frameworks have recently been demonstrated as promising materials for photocatalytic water splitting and are usually used in the form of suspended powder. From a practical point of view, immobilized CTFs materials are more suitable for large-scale water splitting, owing to their convenient separation and recycling potential. However, existing synthetic approaches mainly result in insoluble and unprocessable powders, which make their future device application a formidable challenge. Herein, we report an aliphatic amine-assisted interfacial polymerization method to obtain free-standing, semicrystalline CTFs film with excellent photoelectric performance. The lateral size of the film was up to 250 cm2, and average thickness can be tuned from 30 to 500 nm. The semicrystalline structure was confirmed by high-resolution transmission electron microscope, powder X-ray diffraction, grazing-incidence wide-angle X-ray scattering, and small-angle X-ray scattering analysis. Intrigued by the good light absorption, crystalline structure, and large lateral size of the film, the film immobilized on a glass support exhibited good photocatalytic hydrogen evolution performance (5.4 mmol h-1 m-2) with the presence of co-catalysts i.e., Pt nanoparticles and was easy to recycle.

9.
Dalton Trans ; 46(26): 8505-8513, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28632261

RESUMO

A new synthetic approach to tri-substituted trisalkoxy-hexavanadate clusters containing different organic groups was developed in this work. Four mixed-valence or fully reduced POV hybrids were synthesized and structurally characterized, including an amino-containing derivative of hexavanadate, Na2[VVO10{NH2C(CH2O)3}3] (1). Furthermore, a novel mixed-valence POV hybrid was prepared via the amidation of 1, indicating that 1 can be used as an excellent building block for the design and synthesis of mixed-valence POV functional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA