RESUMO
As a critical step during innate response, the cytoplasmic ß subunit (IFN-γR2) of interferon-γ receptor (IFN-γR) is induced and translocates to plasma membrane to join α subunit to form functional IFN-γR to mediate IFN-γ signaling. However, the mechanism driving membrane translocation and its significance remain largely unknown. We found, unexpectedly, that mice deficient in E-selectin, an endothelial cell-specific adhesion molecule, displayed impaired innate activation of macrophages upon Listeria monocytogenes infection yet had increased circulating IFN-γ. Inflammatory macrophages from E-selectin-deficient mice had less surface IFN-γR2 and impaired IFN-γ signaling. BTK elicited by extrinsic E-selectin engagement phosphorylates cytoplasmic IFN-γR2, facilitating EFhd2 binding and promoting IFN-γR2 trafficking from Golgi to cell membrane. Our findings demonstrate that membrane translocation of cytoplasmic IFN-γR2 is required to activate macrophage innate response against intracellular bacterial infection, identifying the assembly of functional cytokine receptors on cell membrane as an important layer in innate activation and cytokine signaling.
Assuntos
Selectina E/metabolismo , Imunidade Inata , Receptores de Interferon/metabolismo , Animais , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Selectina E/deficiência , Selectina E/genética , Complexo de Golgi/metabolismo , Interferon gama/sangue , Interferon gama/metabolismo , Listeria/patogenicidade , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Transporte Proteico , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Transdução de Sinais , Receptor de Interferon gamaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.
Assuntos
Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , COVID-19 , Epitopos de Linfócito B , Tolerância Imunológica , Mutação , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , Imunidade Humoral , Imunização Secundária , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.
Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Seguimentos , Predisposição Genética para Doença , Estudos de Associação Genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Homeodomínio/genéticaRESUMO
Major histocompatibility complex (MHC)-peptide binding is a critical step in enabling a peptide to serve as an antigen for T-cell recognition. Accurate prediction of this binding can facilitate various applications in immunotherapy. While many existing methods offer good predictive power for the binding affinity of a peptide to a specific MHC, few models attempt to infer the binding threshold that distinguishes binding sequences. These models often rely on experience-based ad hoc criteria, such as 500 or 1000nM. However, different MHCs may have different binding thresholds. As such, there is a need for an automatic, data-driven method to determine an accurate binding threshold. In this study, we proposed a Bayesian model that jointly infers core locations (binding sites), the binding affinity and the binding threshold. Our model provided the posterior distribution of the binding threshold, enabling accurate determination of an appropriate threshold for each MHC. To evaluate the performance of our method under different scenarios, we conducted simulation studies with varying dominant levels of motif distributions and proportions of random sequences. These simulation studies showed desirable estimation accuracy and robustness of our model. Additionally, when applied to real data, our results outperformed commonly used thresholds.
Assuntos
Algoritmos , Peptídeos , Teorema de Bayes , Peptídeos/química , Ligação Proteica , Sítios de Ligação , Proteínas/metabolismoRESUMO
Perilipin 2 (Plin2) is known to be dysregulated in several human malignancies, which facilitates cancer progression. Recent studies have found that the abnormal expression of Plin2 is associated with poor prognosis of non-small cell lung cancer (NSCLC). However, the specific role of Plin2 and its underlying mechanism remain unclear. This study revealed that Plin2 expression was low in NSCLC tissues, and its relatively higher expression indicated larger tumor size and poorer prognosis. In vitro experiments proved that Plin2 promoted NSCLC cellular proliferation and inhibited autophagy by activating the AKT/mTOR pathway. Meanwhile, treatment with the AKT phosphorylation promoter or inhibitor neutralized the influence of Plin2 depletion or over-expression on proliferation and autophagy, respectively. In vivo study showed that Plin2 stimulated subcutaneous tumorigenesis of NSCLC cells in nude mice. Collectively, this study clarified the carcinogenic role of Plin2 and its molecular mechanism in NSCLC progression, which may facilitate a targeted therapy in the future.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Pulmonares/patologia , Perilipina-2/metabolismo , Transdução de Sinais , Camundongos Nus , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia/genética , Proliferação de CélulasRESUMO
BACKGROUND: The Bucephalidae is a large family of digenean trematodes but most previous analyses of its phylogenetic position have relied on a single mitochondrial gene or morphological features. Mitochondrial genomes (mitogenomes) remain unavailable for the entire family. To address this, we sequenced the complete mitogenome of Dollfustrema vaneyi and analyzed the phylogenetic relationships with other trematodes. RESULTS: The circular genome of Dollfustrema vaneyi spanned 14,959 bp and contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a major non-coding region. We used concatenated amino acid and nucleotide sequences of all 36 genes for phylogenetic analyses, conducted using MrBayes, IQ-TREE and PhyloBayes. We identified pronounced topological instability across different analyses. The addition of recently sequenced two mitogenomes for the Aspidogastrea subclass along with the use of a site-heterogeneous model stabilized the topology, particularly the positions of Azygiidae and Bucephalidae. The stabilized results indicated that Azygiidae was the closest lineage to Bucephalidae in the available dataset, and together, they clustered at the base of the Plagiorchiida. CONCLUSIONS: Our study provides the first comprehensive description and annotation of the mitochondrial genome for the Bucephalidae family. The results indicate a close phylogenetic relationship between Azygiidae and Bucephalidae, and reveal their basal placement within the order Plagiorchiida. Furthermore, the inclusion of Aspidogastrea mitogenomes and the site-heterogeneous model significantly improved the topological stability. These data will provide key molecular resources for future taxonomic and phylogenetic studies of the family Bucephalidae.
Assuntos
Genoma Mitocondrial , Filogenia , Trematódeos , Animais , Trematódeos/genética , Trematódeos/classificação , RNA de Transferência/genéticaRESUMO
Autoantibodies (AAbs) in the blood of colorectal cancer (CRC) patients have been evaluated for tumor detection. However, it remains uncertain whether these AAbs are specific to tumor-associated antigens. In this study, we explored the IgG and IgM autoantibody repertoires in both the in situ tissue microenvironment and peripheral blood as potential tumor-specific biomarkers. We applied high-density protein arrays to profile AAbs in the tumor-infiltrating lymphocyte supernatants and corresponding serum from four patients with CRC, as well as in the serum of three noncancer controls. Our findings revealed that there were more reactive IgM AAbs than IgG in both the cell supernatant and corresponding serum, with a difference of approximately 3-5 times. Immunoglobulin G was predominant in the serum, while IgM was more abundant in the cell supernatant. We identified a range of AAbs present in both the supernatant and the corresponding serum, numbering between 432 and 780, with an average of 53.3% shared. Only 4.7% (n = 23) and 0.2% (n = 2) of reactive antigens for IgG and IgM AAbs, respectively, were specific to CRC. Ultimately, we compiled a list of 19 IgG AAb targets as potential tumor-specific AAb candidates. Autoantibodies against one of the top candidates, p15INK4b-related sequence/regulation of nuclear pre-mRNA domain-containing protein 1A (RPRD1A), were significantly elevated in 53 CRC patients compared to 119 controls (p < 0.0001). The project revealed that tissue-derived IgG AAbs, rather than IgM, are the primary source of tumor-specific AAbs in peripheral blood. It also identified potential tumor-specific AAbs that could be applied for noninvasive screening of CRC.
Assuntos
Autoanticorpos , Neoplasias Colorretais , Humanos , Biomarcadores Tumorais , Imunoglobulina G , Imunoglobulina M , Microambiente Tumoral , Proteínas Repressoras , Proteínas de Ciclo CelularRESUMO
G-Quadruplex/thioflavin (G4/THT) has become a very promising label-free fluorescent luminescent element for nucleic acid detection due to its good programmability and compatibility. However, the weak fluorescence efficiency of single-molecule G4/THT limits its potential applications. Here, we developed an entropy-driven catalytic (EDC) G4 (EDC-G4) cycle amplification technology as a universal label-free signal amplification and output system by properly programming classical EDC and G4 backbone sequences, preintegrated ligase chain reaction (LCR) for label-free sensitive detection of single nucleotide polymorphisms (SNPs). First, the positive strand LCR enabled specific transduction and preliminary signal amplification from single-base mutation information to single-strand information. Subsequently, the EDC-G4 cycle amplification reaction was activated, accompanied by the production of a large number of G4/THT luminophores to output fluorescent signals. The EDC-G4 system was proposed to address the weak fluorescence of G4/THT and obtain a label-free fluorescence signal amplification. The dual-signal amplification effect enabled the LCR-EDC-G4 detection system to accurately detect mutant target (MT) at concentrations as low as 22.39 fM and specifically identify 0.01% MT in a mixed detection pool. Moreover, the LCR-EDC-G4 system was further demonstrated for its potential application in real biological samples. Therefore, this study not only contributes ideas for the development of label-free fluorescent biosensing strategies but also provides a high-performance and practical SNP detection tool in parallel.
Assuntos
Entropia , Quadruplex G , Polimorfismo de Nucleotídeo Único , Catálise , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Ligases/metabolismo , Ligases/química , Ligases/genética , Técnicas Biossensoriais/métodos , Reação em Cadeia da Ligase , Corantes Fluorescentes/químicaRESUMO
The controlled self-assembly of nanomaterials has been a great challenge in nanosynthesis, especially for hierarchical architectures with high complexity. Particularly, the structural design of Prussian blue (PB) series materials with robustness and fast nucleation is even more difficult. Herein, a self-sustained-release strategy based on the slow release of metal ions from coordination ions is proposed to guide the assembly of PB crystals. The key to this strategy is the slow release by ligand, which can create ultra-low concentrations of metal ions so as to provide the possibility to realize the surface charge manipulation of PB primary colloids. By adding electrolyte or changing the polarity of the solution, the surface charge regulation of PB colloid is realized, and the PB hierarchical structures with branch fractal structure (PB-BS), octahedral fractal structure, and spherical fractal structure are effectively constructed. This work not only achieves the designability of the PB structure, but also synchronizes the functionalization during the PB assembly growth process by in situ encapsulation of the effective catalytic active component L-Ascorbic acid. As a result, the assembled PB-BS exhibits greatly enhanced catalytic activity and selectivity in styrene oxidation with the selectivity of oxidized styrene increasing from 35.6% (PB) to 80.5% (PB-BS).
RESUMO
Nanotechnology has ushered in significant advancements in drug design, revolutionizing the prevention, diagnosis, and treatment of various diseases. The strategic utilization of nanotechnology to enhance drug loading, delivery, and release has garnered increasing attention, leveraging the enhanced physical and chemical properties offered by these systems. Polyamidoamine (PAMAM) dendrimers have been pivotal in drug delivery, yet there is room for further enhancement. In this study, we conjugated PAMAM dendrimers with chitosan (CS) to augment cellular internalization in tumor cells. Specifically, doxorubicin (DOX) was initially loaded into PAMAM dendrimers to form DOX-loaded PAMAM (DOX@PAMAM) complexes via intermolecular forces. Subsequently, CS was linked onto the DOX-loaded PAMAM dendrimers to yield CS-conjugated PAMAM loaded with DOX (DOX@CS@PAMAM) through glutaraldehyde crosslinking via the Schiff base reaction. The resultant DOX@CS@PAMAM complexes were comprehensively characterized using Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Notably, while the drug release profile of DOX@CS@PAMAM in acidic environments was inferior to that of DOX@PAMAM, DOX@CS@PAMAM demonstrated effective acid-responsive drug release, with a cumulative release of 70% within 25 h attributed to the imine linkage. Most importantly, DOX@CS@PAMAM exhibited significant selective cellular internalization rates and antitumor efficacy compared to DOX@PAMAM, as validated through cell viability assays, fluorescence imaging, and flow cytometry analysis. In summary, DOX@CS@PAMAM demonstrated superior antitumor effects compared to unconjugated PAMAM dendrimers, thereby broadening the scope of dendrimer-based nanomedicines with enhanced therapeutic efficacy and promising applications in cancer therapy.
Assuntos
Quitosana , Dendrímeros , Doxorrubicina , Dendrímeros/química , Quitosana/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Poliaminas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular TumoralRESUMO
Chemoradiation-induced hearing loss (CRIHL) is one of the most devasting side effects for nasopharyngeal carcinoma (NPC) patients, which seriously affects survivors' long-term quality of life. However, few studies have comprehensively characterized the risk factors for CRIHL. In this study, we found that age at diagnosis, tumor stage, and concurrent cisplatin dose were positively associated with chemoradiation-induced hearing loss. We performed a genome-wide association study (GWAS) in 777 NPC patients and identified rs1050851 (within the exon 2 of NFKBIA), a variant with a high deleteriousness score, to be significantly associated with hearing loss risk (HR = 5.46, 95% CI 2.93-10.18, P = 9.51 × 10-08). The risk genotype of rs1050851 was associated with higher NFKBIA expression, which was correlated with lower cellular tolerance to cisplatin. According to permutation-based enrichment analysis, the variants mapping to 149 hereditary deafness genes were significantly enriched among GWAS top signals, which indicated the genetic similarity between hereditary deafness and CRIHL. Pathway analysis suggested that synaptic signaling was involved in the development of CRIHL. Additionally, the risk score integrating genetic and clinical factors can predict the risk of hearing loss with a relatively good performance in the test set. Collectively, this study shed new light on the etiology of chemoradiation-induced hearing loss, which facilitates high-risk individuals' identification for personalized prevention and treatment.
Assuntos
Surdez , Perda Auditiva , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Cisplatino/efeitos adversos , Estudo de Associação Genômica Ampla , Qualidade de Vida , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/induzido quimicamenteRESUMO
It is a substantial challenge to construct electrocatalysts with high activity, good selectivity, and long-term stability for electrocatalytic reduction of carbon dioxide to formic acid. Herein, bismuth and indium species are innovatively integrated into a uniform heterogeneous spherical structure by a neoteric quasi-microemulsion method, and a novel C@In2 O3 @Bi50 core-shell structure is constructed through a subsequent one-step phase separation strategy due to melting point difference and Kirkendall effect with the nano-limiting effect of the carbon structure. This core-shell C@In2 O3 @Bi50 catalyst can selectively reduce CO2 to formate with high selectivity (≈90% faradaic efficiency), large partial current density (24.53 mA cm-2 at -1.36 V), and long-term stability (up to 14.5 h), superior to most of the Bi-based catalysts. The hybrid Bi/In2 O3 interfaces of core-shell C@In2 O3 @Bi will stabilize the key intermediate HCOO* and suppress CO poisoning, benefiting the CO2 RR selectivity and stability, while the internal cavity of core-shell structure will improve the reaction kinetics because of the large specific surface area and the enhancement of ion shuttle and electron transfer. Furthermore, the nano-limited domain effect of outmost carbon prevent active components from oxidation and agglomeration, helpful for stabilizing the catalyst. This work offers valuable insights into core-shell structure engineering to promote practical CO2 conversion technology.
RESUMO
Defects, such as unsaturated coordination centers and vacancies, can fundamentally change materials' inherent properties and growth habits. The development of defect engineering has promoted the application of many technologies, but it is still a great challenge to selectively manufacture defect sites in existing material systems. It is shown here that in situ site-directed tailoring of metal sites in Prussian blue analogs (PBA) can be achieved according to the reducibility differences of different metal atoms, forming naturally nonpreferred unsaturated coordination centers. Meanwhile, the in situ capture of small reducing molecule can realize site-directed tailoring of crystal facets during crystal growth and results in oriented 1D growth. As an oxygen evolution reaction catalyst, the resulted PBA with the nonpreferred unsaturated coordination centers shows a low overpotential of 239 mV at 10 mA cm-2 in alkali, superior to the original PBAs and the previously reported defective PBA derivatives, which can be ascribed to the unsaturated coordination active center and the unique 1D structure. This work opens up opportunities for producing naturally nonpreferred unsaturated coordination center in nanomaterials for broad applications.
RESUMO
Epstein-Barr virus (EBV) infection is associated with multiple malignancies, including pulmonary lymphoepithelioma-like carcinoma (pLELC), a particular subtype of primary lung cancer. However, the genomic characteristics of EBV related to pLELC remain unclear. Here, we obtained the whole-genome data set of EBV isolated from 78 pLELC patients and 37 healthy controls using EBV-captured sequencing. Compared with the reference genome (NC_007605), a total of 3,995 variations were detected across pLELC-derived EBV sequences, with the mutational hot spots located in latent genes. Combined with 180 published EBV sequences derived from healthy people in Southern China, we performed a genome-wide association study and identified 32 variations significantly related to pLELC (P < 2.56 × 10-05, Bonferroni correction), with the top signal of single nucleotide polymorphism (SNP) coordinate T7327C (OR = 1.22, P = 2.39 × 10-15) locating in the origin of plasmid replication (OriP). The results of population structure analysis of EBV isolates in East Asian showed the EBV strains derived from pLELC were more similar to those from nasopharyngeal carcinoma (NPC) than other EBV-associated diseases. In addition, typical latency type-II infection were recognized for EBV of pLELC at both transcription and methylation levels. Taken together, we defined the global view of EBV genomic profiles in pLELC patients for the first time, providing new insights to deepening our understanding of this rare EBV-associated primary lung carcinoma. IMPORTANCE Pulmonary lymphoepithelioma-like carcinoma (pLELC) is a rare, distinctive subtype of primary lung cancer closely associated with Epstein-Barr virus (EBV) infection. Here, we gave the first overview of pLELC-derived EBV at the level of genome, methylation and transcription. We obtained the EBV sequences data set from 78 primary pLELC patients, and revealed the sequences diversity across EBV genome and detected variability in known immune epitopes. Genome-wide association analysis combining 217 healthy controls identifies significant variations related to the risk of pLELC. Meanwhile, we characterized the integration landscapes of EBV at the genome-wide level. These results provided new insight for understanding EBV's role in pLELC tumorigenesis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/virologia , Infecções por Vírus Epstein-Barr/virologia , Genoma Viral/genética , Herpesvirus Humano 4/genética , Neoplasias Pulmonares/virologia , Povo Asiático , China , Metilação de DNA , Epitopos de Linfócito T/genética , Genes Virais/genética , Variação Genética , Estudo de Associação Genômica Ampla , Herpesvirus Humano 4/isolamento & purificação , Humanos , Integração Viral , Latência Viral/genéticaRESUMO
How to accurately estimate protein-ligand binding affinity remains a key challenge in computer-aided drug design (CADD). In many cases, it has been shown that the binding affinities predicted by classical scoring functions (SFs) cannot correlate well with experimentally measured biological activities. In the past few years, machine learning (ML)-based SFs have gradually emerged as potential alternatives and outperformed classical SFs in a series of studies. In this study, to better recognize the potential of classical SFs, we have conducted a comparative assessment of 25 commonly used SFs. Accordingly, the scoring power was systematically estimated by using the state-of-the-art ML methods that replaced the original multiple linear regression method to refit individual energy terms. The results show that the newly-developed ML-based SFs consistently performed better than classical ones. In particular, gradient boosting decision tree (GBDT) and random forest (RF) achieved the best predictions in most cases. The newly-developed ML-based SFs were also tested on another benchmark modified from PDBbind v2007, and the impacts of structural and sequence similarities were evaluated. The results indicated that the superiority of the ML-based SFs could be fully guaranteed when sufficient similar targets were contained in the training set. Moreover, the effect of the combinations of features from multiple SFs was explored, and the results indicated that combining NNscore2.0 with one to four other classical SFs could yield the best scoring power. However, it was not applicable to derive a generic target-specific SF or SF combination.
Assuntos
Desenvolvimento de Medicamentos/métodos , Aprendizado de Máquina/normas , Proteômica/métodos , Animais , Desenvolvimento de Medicamentos/normas , Humanos , Ligantes , Ligação Proteica , Proteoma/metabolismo , Proteômica/normasRESUMO
Machine learning-based scoring functions (MLSFs) have attracted extensive attention recently and are expected to be potential rescoring tools for structure-based virtual screening (SBVS). However, a major concern nowadays is whether MLSFs trained for generic uses rather than a given target can consistently be applicable for VS. In this study, a systematic assessment was carried out to re-evaluate the effectiveness of 14 reported MLSFs in VS. Overall, most of these MLSFs could hardly achieve satisfactory results for any dataset, and they could even not outperform the baseline of classical SFs such as Glide SP. An exception was observed for RFscore-VS trained on the Directory of Useful Decoys-Enhanced dataset, which showed its superiority for most targets. However, in most cases, it clearly illustrated rather limited performance on the targets that were dissimilar to the proteins in the corresponding training sets. We also used the top three docking poses rather than the top one for rescoring and retrained the models with the updated versions of the training set, but only minor improvements were observed. Taken together, generic MLSFs may have poor generalization capabilities to be applicable for the real VS campaigns. Therefore, it should be quite cautious to use this type of methods for VS.
Assuntos
Descoberta de Drogas/métodos , Aprendizado de Máquina , Interface Usuário-Computador , Conjuntos de Dados como Assunto , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação ProteicaRESUMO
Human leukocyte antigen (HLA) molecules are essential for presenting Epstein-Barr virus (EBV) antigens and are closely related to nasopharyngeal carcinoma (NPC). This study aims to systematically investigate the association between HLA-bound EBV peptides and NPC risk through in silico HLA-peptide binding prediction. A total of 455 NPC patients and 463 healthy individuals in NPC endemic areas were recruited, and HLA-target sequencing was performed. HLA-peptide binding prediction for EBV, followed by peptidome-wide logistic regression and motif analysis, was applied. Binding affinity changes for EBV peptides carrying high-risk mutations were analyzed. We found that NPC-associated EBV peptides were significantly enriched in immunogenic proteins and core linkage disequilibrium (LD) proteins related to evolution, especially those binding HLA-A alleles (p = 3.10 × 10-4 for immunogenic proteins and p = 8.10 × 10-5 for core LD proteins related to evolution). These peptides were clustered and showed binding motifs of HLA supertypes, among which supertype A02 presented an NPC-risk effect (padj = 3.77 × 10-4 ) and supertype A03 presented an NPC-protective effect (padj = 4.89 × 10-4 ). Moreover, a decreased binding affinity toward risk HLA supertype A02 was observed for the peptide carrying the NPC-risk mutation BNRF1 V1222I (p = 0.0078), and an increased binding affinity toward protective HLA supertype A03 was observed for the peptide carrying the NPC-risk mutation BALF2 I613V (p = 0.022). This study revealed the distinct preference of EBV peptides for binding HLA supertypes, which may contribute to shaping EBV population structure and be involved in NPC development.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Epitopos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Carcinoma Nasofaríngeo/genética , Antígenos de Histocompatibilidade Classe II , Neoplasias Nasofaríngeas/genéticaRESUMO
Previous studies have demonstrated strong associations between host genetic factors and Epstein-Barr virus (EBV) VCA-IgA with the risk of nasopharyngeal carcinoma (NPC). However, the specific interplay between host genetics and EBV VCA-IgA on NPC risk is not well understood. In this two-stage case-control study (N = 4804), we utilized interaction and mediation analysis to investigate the interplay between host genetics (genome-wide association study-derived polygenic risk score [PRS]) and EBV VCA-IgA antibody level in the NPC risk. We employed a four-way decomposition analysis to assess the extent to which the genetic effect on NPC risk is mediated by or interacts with EBV VCA-IgA. We consistently found a significant interaction between the PRS and EBV VCA-IgA on NPC risk (discovery population: synergy index [SI] = 2.39, 95% confidence interval [CI] = 1.85-3.10; replication population: SI = 3.10, 95% CI = 2.17-4.44; all pinteraction < 0.001). Moreover, the genetic variants included in the PRS demonstrated similar interactions with EBV VCA-IgA antibody. We also observed an obvious dose-response relationship between the PRS and EBV VCA-IgA antibody on NPC risk (all ptrend < 0.001). Furthermore, our decomposition analysis revealed that a substantial proportion (approximately 90%) of the genetic effects on NPC risk could be attributed to host genetic-EBV interaction, while the risk effects mediated by EBV VCA-IgA antibody were weak and statistically insignificant. Our study provides compelling evidence for an interaction between host genetics and EBV VCA-IgA antibody in the development of NPC. These findings emphasize the importance of implementing measures to control EBV infection as a crucial strategy for effectively preventing NPC, particularly in individuals at high genetic risk.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Neoplasias Nasofaríngeas/genética , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Anticorpos Antivirais/genética , Proteínas do Capsídeo/genética , Antígenos Virais/genética , Imunoglobulina ARESUMO
BACKGROUND: Visceral obesity is associated with high cardiovascular events risk in type 2 diabetes mellitus (T2DM). Whether normal-weight visceral obesity will pose a higher atherosclerotic cardiovascular disease (ASCVD) risk than body mass index (BMI)-defined overweight or obese counterparts with or without visceral obesity remains unclear. We aimed to explore the relationship between general obesity and visceral obesity and 10-year ASCVD risk in patients with T2DM. METHODS: Patients with T2DM (6997) who satisfied the requirements for inclusion were enrolled. Patients were considered to have normal weight when 18.5 kg/m2 ≤ BMI < 24 kg/m2; overweight when 24 kg/m2 ≤ BMI < 28 kg/m2; and obesity when BMI ≥ 28 kg/m2. Visceral obesity was defined as a visceral fat area (VFA) ≥ 100 cm2. Patients were separated into six groups based on BMI and VFA. The odd ratios (OR) for a high 10-year ASCVD risk for different combinations of BMI and VFA were analysed using stepwise logistic regression. Receiver operating characteristic (ROC) curves for diagnosing the high 10-year ASCVD risk were constructed, and areas under the ROC curves were estimated. Potential non-linear relationships between VFA levels and high 10-year ASCVD risk were examined using restricted cubic splines (knot = 4). Multilinear regression was used to identify factors affecting VFA in patients with T2DM. RESULTS: In patients with T2DM, subjects with normal-weight visceral obesity had the highest 10-year ASCVD risk among the six groups, which had more than a 2-fold or 3-fold higher OR than those who were overweight or obese according to BMI but did not have visceral obesity (all P < 0.05). The VFA threshold for high 10-year ASCVD risk was 90 cm2. Multilinear regression showed significant differences in the effect of age, hypertension, drinking, fasting serum insulin, fasting plasma glucose, 2 h postprandial C-peptide, triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol on VFA in patients with T2DM (all P < 0.05). CONCLUSIONS: T2DM patients with normal-weight visceral obesity had a higher 10-year ASCVD risk than BMI-defined overweight or obese counterparts with or without visceral obesity, which should initiate standardised management for ASCVD primary prevention.