Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 345, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349699

RESUMO

Poplar is one of the main urban and rural greening and shade tree species in the northern hemisphere, but its growth and development is always restricted by salt stress. R2R3-MYB transcription factor family is commonly involved in many biological processes during plant growth and stress endurance. In this study, PagMYB151 (Potri.014G035100) one of R2R3-MYB members related to salt stress and expressed in both nucleus and cell membrane was cloned from Populus alba × P. glandulosa to perfect the salt tolerance mechanism. Morphological and physiological indexes regulated by PagMYB151 were detected using the PagMYB151 overexpression (OX) and RNA interference (RNAi) transgenic poplar lines. Under salt stress conditions, compared with RNAi and the non-transgenic wild-type (WT) plants, the plant height, both aboveground and underground part fresh weight of OX was significantly increased. In addition, OX has a longer and finer root structure and a larger root surface area. The root activity of OX was also enhanced, which was significantly different from RNAi but not from WT under salt treatment. Under normal conditions, the stomatal aperture of OX was larger than WT, whereas this phenotype was not obvious after salt stress treatment. In terms of physiological indices, OX enhanced the accumulation of proline but reduced the toxicity of malondialdehyde to plants under salt stress. Combing with the transcriptome sequencing data, 6 transcription factors induced by salt stress and co-expressed with PagMYB151 were identified that may cooperate with PagMYB151 to function in salt stress responding process. This study provides a basis for further exploring the molecular mechanism of poplar PagMYB151 transcription factor under abiotic stress.


Assuntos
Populus , Tolerância ao Sal , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/metabolismo , Prolina , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614232

RESUMO

Drought is one of the main environmental factors limiting plant growth and development. The AP2/ERF transcription factor (TF) ERF194 play key roles in poplar growth and drought-stress tolerance. However, the physiological mechanism remains to be explored. In this study, the ERF194-overexpression (OX), suppressed-expression (RNA interference, RNAi), and non-transgenic (WT) poplar clone 717 were used to study the physiology role of ERF194 transcription factor in poplar growth and drought tolerance. Morphological and physiological methods were used to systematically analyze the growth status, antioxidant enzyme activity, malondialdehyde (MDA), soluble sugars, starch, and non-structural carbohydrate (NSC) contents of poplar. Results showed that, compared with WT, OX plants had decrease in plant height, internode length, and leaf area and increased number of fine roots under drought stress. In addition, OX had higher water potential, activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), contents of chlorophyll, soluble sugar, starch, and NSC, implying that ERF194 positively regulates drought tolerance in poplar. The growth status of RNAi was similar to those of WT, but the relative water content and CAT activity of RNAi were lower than those of WT under drought treatment. Based on the transcriptome data, functional annotation and expression pattern analysis of differentially expressed genes were performed and further confirmed by RT-qPCR analysis. Gene ontology (GO) enrichment and gene expression pattern analysis indicated that overexpression of ERF194 upregulated the expression of oxidoreductases and metabolism-related genes such as POD and SOD. Detection of cis-acting elements in the promoters suggested that ERF194 may bind to these genes through MeJA-responsive elements, ABA-responsive elements, or elements involved in defense and stress responses. The above results show that ERF194 improved tolerance to drought stress in poplar by regulating its growth and physiological factors. This study provides a new idea for the role of ERF194 transcription factor in plant growth and drought-stress response.


Assuntos
Resistência à Seca , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Antioxidantes/metabolismo , Secas , Peroxidases/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Peroxidase/metabolismo , Água/metabolismo , Amido/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895117

RESUMO

Salt stress is one of the major abiotic stresses that limits plant growth and development. The MYB transcription factor family plays essential roles in plant growth and development, as well as stress tolerance processes. In this study, the cDNA of the 84K poplar (Populus abla × Populus glandulosa) was used as a template to clone the full length of the PagMYB205 gene fragment, and transgenic poplar lines with PagMYB205 overexpression (OX) or inhibited expression (RNAi, RNA interference) were cultivated. The role of PagMYB205 in poplar growth and development and salt tolerance was detected using morphological and physiological methods. The full-length CDS sequence of PagMYB205 was 906 bp, encoding 301 amino acids, and the upstream promoter sequence contained abiotic stress-related cis-acting elements. The results of subcellular localization and transactivation assays showed that the protein had no self-activating activity and was localized in the nucleus. Under salt stress, the rooting rate and root vitality of RNAi were higher than OX and wild type (WT). However, the malondialdehyde (MDA) content of the RNAi lines was significantly lower than that of the wild-type (WT) and OX lines, but the reactive oxygen species (ROS) scavenging ability, such as the peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) enzyme activities, was dramatically more powerful. Most significantly of all, the RNAi3 line with the lowest expression level of PagMYB205 had the lowest MDA content, the best enzyme activity and root vitality, and the best salt stress tolerance compared to the other lines. The above results suggest that the transcription factor PagMYB205 could negatively regulate salt stress tolerance by regulating antioxidant enzyme activity and root vitality.


Assuntos
Populus , Tolerância ao Sal , Tolerância ao Sal/genética , Espécies Reativas de Oxigênio/metabolismo , Populus/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA