Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 6): 1054-1063, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37860938

RESUMO

Recently, a novel approach has been proposed to produce ultrashort, fully coherent high-repetition-rate EUV and X-ray radiation by combining an energy recovery linac (ERL) with the angular-dispersion-induced microbunching methodology. It is critical to maintain microbunching when the beam passes through bending magnets between the undulators, which results in difficulties supporting multiple beamlines. In this paper, the design of a multiplexed emitting system consisting of multi-bend achromats, matching sections and radiators to facilitate the multi-beamline operation is presented. Theoretical analysis and numerical simulations have been carried out and the results show that the microbunching and beam quality can be well maintained after four times of bending. Five radiation pulses with a central wavelength of 13.5 nm and peak power at the MW level have been produced by the same electron beam via this multiplexed emitting system. The proposed method holds potential in the multi-beamline operation of ERL- or storage-ring-based coherent light sources.

2.
Opt Express ; 23(11): 14993-5002, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072855

RESUMO

Laser-plasma based accelerator has the potential to dramatically reduce the size and cost of future x-ray light sources to the university-laboratory scale. However, the large energy spread of the laser-plasma accelerated electron beam may hinder the way for short wavelength free-electron laser generation. In this paper, we propose a novel method for directly imprinting strong coherent micro-bunching on the electron beam with large intrinsic energy spread by using a wavefront-tilted conventional optical laser beam and a weak dipole magnet. Theoretical analysis and numerical simulations demonstrate that this technique can be used for the generation of fully coherent femtosecond soft x-ray radiation at gigawatts level with a very short undulator.

3.
Phys Rev Lett ; 114(11): 114801, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839281

RESUMO

High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter, we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wakefields, which, otherwise, increase beam emittance, can be effectively canceled. This work also extends the applications of corrugated structures to the low beam charge (a few pC) and low beam energy (a few MeV) regime and may have a strong impact in many accelerator-based facilities.

4.
Sci Rep ; 12(1): 3325, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228673

RESUMO

A compact damping ring with a limited circumference of about 160 m is proposed for producing kilowatt-level coherent EUV radiation. The electron bunch in the storage ring is modulated by a 257 nm wavelength seed laser with the help of the angular-dispersion-induced micro-bunching method (Feng and Zhao in Sci Rep 7:4724, 2017), coherent radiation at 13.5 nm with an average power of about 2.5 kW can be achieved with the state-of-the-art accelerator and laser technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA