Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987398

RESUMO

OBJECTIVES: To investigate the effect of motion-compensated reconstruction (MCR) algorithm on improving the image quality of coronary computed tomography angiography (CCTA) using second-generation dual-layer spectral detector computed tomography (DLCT), and to evaluate the influence of heart rate (HR) on the motion-correction efficacy of this algorithm. MATERIALS AND METHODS: We retrospectively enrolled 127 patients who underwent CCTA for suspected coronary artery disease using second-generation DLCT. We divided the patients into two subgroups according to their average HR during scanning: the "HR < 75 bpm" group and the "HR ≥ 75 bpm" group. All images were reconstructed by the standard (STD) algorithm and MCR algorithm. Subjective image quality (4-point Likert scale), interpretability, and objective image quality between the STD and MCR in the whole population and within each subgroup were compared. RESULTS: MCR showed significantly higher Likert scores and interpretability than STD on the per-segment (3.58 ± 0.69 vs. 2.82 ± 0.93, 98.4% vs. 91.9%), per-vessel (3.12 ± 0.81 vs. 2.12 ± 0.74, 96.3% vs. 78.7%) and per-patient (2.57 ± 0.76 vs. 1.62 ± 0.55, 90.6% vs. 59.1%) levels (all p < 0.001). In the analysis of HR subgroups on a per-vessel basis of interpretability, significant differences were observed only in the right coronary artery in the low HR group, whereas significant differences were noted in three major coronary arteries in the high HR group. For objective image quality assessment, MCR significantly improved the SNR (13.22 ± 4.06 vs. 12.72 ± 4.06) and the contrast-to-noise ratio (15.84 ± 4.82 vs. 15.39 ± 4.38) compared to STD (both p < 0.001). CONCLUSION: MCR significantly improves the subjective image quality, interpretability, and objective image quality of CCTA, especially in patients with higher HRs. CLINICAL RELEVANCE STATEMENT: The motion-compensated reconstruction algorithm of the second-generation dual-layer spectral detector computed tomography is helpful in improving the image quality of coronary computed tomography angiography in clinical practice, especially in patients with higher heart rates. KEY POINTS: Motion artifacts from cardiac movement affect the quality and interpretability of coronary computed tomography angiography (CCTA). This motion-compensated reconstruction (MCR) algorithm significantly improves the image quality of CCTA in clinical practice. Image quality improvement by using MCR was more significant in the high heart rate group.

2.
Mol Biol Rep ; 51(1): 829, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037581

RESUMO

BACKGROUND: The roles of Caveolin-1 (Cav-1) and the Wnt/ß-catenin signaling pathways in cerebral ischemia-reperfusion (I/R) injury are well established. The translocation of ß-catenin into the nucleus is critical for regulating neuronal apoptosis, repair, and neurogenesis within the ischemic brain. It has been reported that the scaffold domain of Caveolin-1 (Cav-1) (residues 95-98) interacts with ß-catenin (residues 330-337). However, the specific contribution of the Cav-1/ß-catenin complex to I/R injury remains unknown. METHODS AND RESULTS: To investigate the mechanism underlying the involvement of the Cav-1/ß-catenin complex in the subcellular translocation of ß-catenin and its subsequent effects on cerebral I/R injury, we treated ischemic brains with ASON (Cav-1 antisense oligodeoxynucleotides) or FTVT (a competitive peptide antagonist of the Cav-1 and ß-catenin interaction). Our study demonstrated that the binding of Cav-1 to ß-catenin following I/R injury prevented the nuclear accumulation of ß-catenin. Treatment with ASON or FTVT after I/R injury significantly increased the levels of nuclear ß-catenin. Furthermore, ASON reduced the phosphorylation of ß-catenin at Ser33, Ser37, and Thr41, which contributes to its proteasomal degradation, while FTVT increased phosphorylation at Tyr333, which is associated with its nuclear translocation. CONCLUSIONS: The above results indicate that the formation of the Cav-1/ß-catenin complex anchors ß-catenin in the cytoplasm following I/R injury. Additionally, both ASON and FTVT treatments attenuated neuronal death in ischemic brains. Our study suggests that targeting the interaction between Cav-1 and ß-catenin serve as a novel therapeutic strategy to protect against neuronal damage during cerebral injury.


Assuntos
Caveolina 1 , Núcleo Celular , Neurônios , Traumatismo por Reperfusão , beta Catenina , beta Catenina/metabolismo , Animais , Traumatismo por Reperfusão/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Neurônios/metabolismo , Neurônios/patologia , Núcleo Celular/metabolismo , Masculino , Ratos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Apoptose , Via de Sinalização Wnt , Ratos Sprague-Dawley , Ligação Proteica , Transporte Proteico , Morte Celular
3.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902252

RESUMO

Spexin2 (SPX2), a paralog of SPX1, is a newly identified gene in non-mammalian vertebrates. Limited studies in fish have evidenced its important role in food intake and energy balance modulation. However, little is known about its biological functions in birds. Using the chicken (c-) as a model, we cloned the full-length cDNA of SPX2 by using RACE-PCR. It is 1189 base pair (bp) in length and predicted to generate a protein of 75 amino acids that contains a 14 amino acids mature peptide. Tissue distribution analysis showed that cSPX2 transcripts were detected in a wide array of tissues, with abundant expression in the pituitary, testis, and adrenal gland. cSPX2 was also observed to be ubiquitously expressed in chicken brain regions, with the highest expression in the hypothalamus. Its expression was significantly upregulated in the hypothalamus after 24 or 36 h of food deprivation, and the feeding behavior of chicks was obviously suppressed after peripheral injection with cSPX2. Mechanistically, further studies evidenced that cSPX2 acts as a satiety factor via upregulating cocaine and amphetamine regulated transcript (CART) and downregulating agouti-related neuropeptide (AGRP) in hypothalamus. Using a pGL4-SRE-luciferase reporter system, cSPX2 was demonstrated to effectively activate a chicken galanin II type receptor (cGALR2), a cGALR2-like receptor (cGALR2L), and a galanin III type receptor (cGALR3), with the highest binding affinity for cGALR2L. Collectively, we firstly identified that cSPX2 serves as a novel appetite monitor in chicken. Our findings will help clarify the physiological functions of SPX2 in birds as well as its functional evolution in vertebrates.


Assuntos
Galinhas , Hipotálamo , Neuropeptídeos , Hormônios Peptídicos , Animais , Masculino , Galinhas/genética , Galinhas/metabolismo , Galanina/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Receptores de Galanina/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo
4.
Biochem Biophys Res Commun ; 609: 84-92, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35421633

RESUMO

Autophagy is a double-edged sword that affects tumor progression by promoting cell survival or death depending on different living contexts. The concrete mechanism by which autophagy modulates the efficacy of radiotherapy for prostate cancer (PC) remains unclear. We exposed RM-1 PC cells to X-ray and explored the role of autophagy in radiation injury. Our results showed increased apoptosis and autophagy levels in RM-1 cells after radiation. Pharmacological inhibition of autophagy by chloroquine significantly mitigated radiation-induced apoptosis, while the enhancement of autophagy by rapamycin aggravated apoptosis. Sirt1, a member of sirtuin family, deacetylates various transcription factors to trigger cell survival in response to radiation injury. We found that radiation led to Sirt1 downregulation, which was reversed by the inhibition of autophagy. On the contrary, enhanced autophagy further diminished protein level of Sirt1. Notably, overexpression of Sirt1 by plasmid significantly alleviated radiation-induced apoptosis, but silenced Sirt1 by siRNA further induced apoptosis, indicating the radioprotective effect of Sirt1 on RM-1 cells. In summary, our findings suggested that autophagy-mediated Sirt1 downregulation might be a promising therapeutic target for PC.


Assuntos
Neoplasias da Próstata , Lesões por Radiação , Sirtuína 1/metabolismo , Animais , Apoptose , Autofagia , Regulação para Baixo , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Sirtuína 1/genética
5.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299645

RESUMO

Water matrix certified reference material (MCRM) of volatile organic compounds (VOCs) is used to provide quality assurance and quality control (QA/QC) during the analysis of VOCs in water. In this research, a water MCRM of 28 VOCs was developed using a "reconstitution" approach by adding VOCs spiking, methanol solution into pure water immediately prior to analysis. The VOCs spiking solution was prepared gravimetrically by dividing 28 VOCs into seven groups, then based on ISO Guide 35, using gas chromatography-mass spectrometry (GC-MS) to investigate the homogeneity and long-term stability. The studies of homogeneity and long-term stability indicated that the batch of VOCs spiking solution was homogeneous and stable at room temperature for at least 15 months. Moreover, the water MCRM of 28 VOCs was certified by a network of nine competent laboratories, and the certified values and expanded uncertainties of 28 VOCs ranged from 6.2 to 17 µg/L and 0.5 to 5.3 µg/L, respectively.

6.
Ann Rheum Dis ; 79(7): 960-968, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32312770

RESUMO

BACKGROUND AND OBJECTIVE: Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease (AID) worldwide. The disease is caused by mutations in the MEFV gene encoding the inflammasome sensor Pyrin. Clinical diagnosis of FMF is complicated by overlap in symptoms with other diseases, and interpretation of genetic testing is confounded by the lack of a clear genotype-phenotype association for most of the 340 reported MEFV variants. In this study, the authors designed a functional assay and evaluated its potential in supporting FMF diagnosis. METHODS: Peripheral blood mononuclear cells (PBMCs) were obtained from patients with Pyrin-associated autoinflammation with an FMF phenotype (n=43) or with autoinflammatory features not compatible with FMF (n=8), 10 asymptomatic carriers and 48 healthy donors. Sera were obtained from patients with distinct AIDs (n=10), and whole blood from a subset of patients and controls. The clinical, demographic, molecular genetic factors and other characteristics of the patient population were assessed for their impact on the diagnostic test read-out. Interleukin (IL)-1ß and IL-18 levels were measured by Luminex assay. RESULTS: The ex vivo colchicine assay may be performed on whole blood or PBMC. The functional assay robustly segregated patients with FMF from healthy controls and patients with related clinical disorders. The diagnostic test distinguished patients with classical FMF mutations (M694V, M694I, M680I, R761H) from patients with other MEFV mutations and variants (K695R, P369S, R202Q, E148Q) that are considered benign or of uncertain clinical significance. CONCLUSION: The ex vivo colchicine assay may support diagnosis of FMF and functional subtyping of Pyrin-associated autoinflammation.


Assuntos
Febre Familiar do Mediterrâneo/diagnóstico , Imunofenotipagem/métodos , Pirina/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Colchicina/análise , Febre Familiar do Mediterrâneo/genética , Feminino , Estudos de Associação Genética , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Pirina/genética , Adulto Jovem
7.
Toxicol Appl Pharmacol ; 364: 68-76, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578885

RESUMO

Cortex Dictamni is extensively used as an herbal medicine worldwide, but is believed to induce hepatotoxicity and even causes mortality in many Asian and European countries. As the most abundant furoquinoline alkaloid ingredient of Cortex Dictamni, dictamnine (DIC) can be metabolically activated by CYP3A to an epoxide metabolite, which possesses the potential to induce hepatotoxicity by covalent binding with proteins. As yet, the hepatotoxicity of DIC and the role played by metabolic activation remain unknown. Here, we found that DIC caused acute liver injury in a time- and dose-dependent manner in mice. The hepatic and urinary DIC epoxide intermediates were observed in DIC-treated mice. Ketoconazole, a CYP3A inhibitor, significantly reduced the hepatotoxicity of DIC and inhibited the formation of reactive metabolites of DIC. Moreover, treatment with 2,3-dihydro-DIC, a DIC analog synthesized by selective reduction of the furan moiety, produced no hepatotoxicity in mice, and no reactive metabolite was formed, suggesting a structural necessity of furan moiety in DIC hepatotoxicity. A time course of gradual hepatic glutathione consumption was observed in DIC-treated mice, while depletion of hepatic glutathione by L-buthionine-S,R-sulfoximine enhanced the hepatotoxicity of DIC. Collectively, this study demonstrates that DIC induces acute hepatocellular injury in mice, and that metabolic activation of furan plays a crucial role in DIC-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Furanos/metabolismo , Fígado/efeitos dos fármacos , Preparações de Plantas/toxicidade , Quinolinas/toxicidade , Ativação Metabólica , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A/farmacologia , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Cetoconazol/farmacologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Tempo , Toxicocinética
8.
Toxicol Appl Pharmacol ; 377: 114624, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199932

RESUMO

Geniposide is a natural hepatotoxic iridoid glycoside. Its hydrolysate of intestinal microbiota, genipin, is thought to be responsible for the hepatotoxicity. However, the underlying mechanism that genipin contributes to the hepatotoxicity of geniposide is not well understood. In this study, we found that genipin spontaneously converted into a reactive dialdehyde intermediate and covalently bond to the primary amine group of free amino acids in both of the phosphate buffers and geniposide-treated rats. Furthermore, genipin dialdehyde can form the covalent linkage to the primary amino group (ε) of lysine side chains of the hepatic proteins in geniposide-treated rats. Pretreatment with ß-glucosidase or antibiotics significantly modulated the genipin dialdehyde formation and protein modification, revealing the essential role of microbial glycosidases. The levels of protein adduct were that mapped onto the hepatotoxicity of geniposide. In summary, this study demonstrates that the intestinal microbiota mediated covalent modification of the hepatic protein by genipin dialdehyde may play a crucial role in the liver injury of geniposide. The study is also helpful for understanding the contribution of intestinal microbiota to the metabolic activation of xenobiotics.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/microbiologia , Microbioma Gastrointestinal/fisiologia , Iridoides/metabolismo , Iridoides/toxicidade , Aldeídos , Aminoácidos/metabolismo , Animais , Antibacterianos/farmacologia , Bile/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Glutationa/metabolismo , Glicosídeo Hidrolases/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , beta-Glucosidase/farmacologia
9.
BMC Infect Dis ; 19(1): 173, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782134

RESUMO

BACKGROUND: A novel method, termed loop-mediated isothermal amplification (LAMP), was developed by Notomi et al. (2000). Individually published results have been reported that this technology has been successfully applied to the detection of a variety of pathogens. However, the overall diagnostic accuracy of LAMP for Mycoplasma pneumoniae (MP) remains unclear. A meta-analysis was therefore performed to review the accuracy of LAMP for Mycoplasma pneumoniae. METHODS: Cochrane Library and PubMed were systematically searched and checked for studies using LAMP for detecting mycoplasma pneumoniae. We used PCR as a reference standard to evaluate the quality of the studies eligible for inclusion in the meta-analysis. Then, the data from the studies were extracted by two independent assessors. Meta-DiSc 1.4 software was utilized to test the heterogeneity of sensitivity (SEN), specificity (SP), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnosis odds ratio (DOR). The pooled analysis results were plotted, and the summary receiver operating characteristic (SROC) curve was plotted by calculating the area under the curve (AUC). Generated pooled summary estimates (95% CIs) were calculated for the overall accuracy, and a bivariate meta-regression model was used for the meta-analysis. RESULTS: Seven studies with nine fourfold tables were included in this meta-analysis. The pooled SEN and SPE for diagnosing Mycoplasma pneumoniae were 0.90 (95% CI: 0.87-0.93) and 0.98 (95% CI: 0.96-0.99), respectively. The PLR was 31.25 (95% CI: 14.83-65.87), NLR 0.10 (95% CI: 0.05-0.22), DOR 399.32 (95% CI: 172.01-927.00), and AUC 0.9892. CONCLUSIONS: In conclusion, compared with PCR, LAMP is a valuable alternative method for Mycoplasma pneumoniae diagnosis in clinic with high sensitivity and specificity. However, more evidence is required to confirm that LAMP can fully replace other methods in the clinical diagnosis of MP.


Assuntos
Mycoplasma pneumoniae/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia por Mycoplasma/microbiologia , Área Sob a Curva , Humanos , Razão de Chances , Pneumonia por Mycoplasma/diagnóstico , Curva ROC , Sensibilidade e Especificidade
10.
Biochem Biophys Res Commun ; 503(3): 1740-1746, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30122318

RESUMO

Decrease of chloride concentration contributes to cardiovascular diseases, however, whether decrease of chloride concentration is involved in platelet activation remains elusive. In the present study, we found that ACI patients had lower serum chloride which would be rescued after Aspirin administration. ADP induced chloride concentration reduction in platelets. Blockade of chloride channel prevented ADP-induced platelet adhesion, activation and aggregation, however, decreasing the extracellular chloride concentration promoted ADP-induced platelet adhesion and activation. Decrease of the extracellular chloride concentration facilitated the inactivation of Src family kinase Lyn, which was not involved in PI3K/Akt phosphorylation. Nevertheless, low chloride concentration promoted the production of platelet cytosol Gαi2 subunit. This subunit prevents AC from converting ATP into cAMP, which therefore, inhibited the phosphorylation of PKA to promote platelet activation. In conclusion, decreased intracellular chloride promotes ADP induced platelet activation through the Gαi2/cAMP/PKA pathway instead of the Lyn/PI3K/Akt signal pathway.


Assuntos
Difosfato de Adenosina/metabolismo , Cloretos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , AMP Cíclico/antagonistas & inibidores , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Cloretos/sangue , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Agregação Plaquetária/sangue , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinases da Família src/metabolismo
11.
Biochem Biophys Res Commun ; 495(2): 1864-1870, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29225169

RESUMO

Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.


Assuntos
Aortite/imunologia , Calcineurina/imunologia , Cálcio/imunologia , Moléculas de Adesão Celular/imunologia , Endotélio Vascular/imunologia , Fatores de Transcrição NFATC/imunologia , Proteína ORAI1/imunologia , Animais , Aortite/patologia , Células Cultivadas , Regulação para Baixo/imunologia , Humanos , Mediadores da Inflamação/imunologia , Redes e Vias Metabólicas/imunologia , Camundongos , Camundongos Endogâmicos C57BL
12.
Cell Biol Int ; 42(10): 1445-1453, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29972266

RESUMO

Our previous study found that ClC-3 chloride channel functioned differently in the vascular and intestinal inflammation, the loss of ClC-3 reduced vascular inflammation but exacerbated intestinal inflammation. To furtherly clarify the role of ClC-3 chloride channels in systemic inflammation, we used LPS-induced endotoxemia model to investigate the response of wild-type and ClC-3 knockout mice to systemic inflammation. The results showed that in the LPS-induced endotoxemia model, the mortality of mice with ClC-3 deletion was significantly higher than that of wild-type mice. The liver and lung inflammations in mice with ClC-3 deletion were significantly less than those in wild-type mice, and the levels of TNF-α and MIP-2 in serum were lower than those of wild-type mice. However, intestinal inflammatory cytokines contents and intestinal permeability were higher than wild-type mice. After transfection of THP-1 cells with ClC-3 siRNA, the contents of TNF-α and IL-8 in LPS-induced cell supernatants were significantly decreased. Further experiments revealed that the level of Bax and Cleaved Caspase 3 in intestinal tissue of mice with ClC-3 deletion was significantly increased, while the level of Bcl2 did not change, which indicated that the intestinal apoptosis was increased after LPS-induced mice intestinal integrity destruction. Therefore, the regulation of intestinal tissue integrity by ClC-3 is crucial for maintaining LPS-induced survival in mice with endotoxemia.


Assuntos
Canais de Cloreto/metabolismo , Animais , Apoptose/fisiologia , Quimiocina CXCL2/metabolismo , Canais de Cloreto/genética , Citocinas , Modelos Animais de Doenças , Endotoxemia/metabolismo , Inflamação , Intestinos/fisiologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo
13.
Biomed Chromatogr ; 32(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29088500

RESUMO

Genipin (GP), an active metabolite of geniposide (GE), exhibits more potent pharmacological effects than its parent compound. In this paper, a sensitive LC-MS/MS method was developed and fully validated for the simultaneous determination of GE and GP in rat plasma. We found that GP degraded rapidly in rat plasma at room temperature as a result of irreversible binding with the endogenous nucleophiles in plasma. GP was stable when the sample's pH was ≤4.0. The degradation of GP in rat plasma was well prevented by immediate addition of 5% glacial acetic acid to the freshly collected plasma. The detection was performed on a tandem mass spectrometer coupled with electrospray ionization source in negative mode. Quantification was conducted by multiple reaction monitoring of the transitions [M + CH3 COO]- m/z 447.3 → 225.3 for GE and [M - H]- m/z 225.2 → 123.1 for GP. The method exhibited high sensitivity (LLOQ 1 ng/mL for GE and 0.2 ng/mL for GP) by selecting the acetate adduct ions as the precursor ions for GE. The robust developed method was successfully applied to a pharmacokinetic study in rats after oral administration of GE.


Assuntos
Cromatografia Líquida/métodos , Iridoides/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Estabilidade de Medicamentos , Iridoides/química , Iridoides/farmacocinética , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Cell Physiol Biochem ; 44(5): 1923-1938, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29224008

RESUMO

BACKGROUND/AIMS: Glial cell line-derived neurotrophic factor (GDNF) is an important factor promoting invasive glioma growth. This study was performed to reveal a unique mechanism of glioma cell proliferation and migration. METHODS: Human U251 glioma cells were used to screen the optimal GDNF concentration and treatment time to stimulate proliferation and migration. MicroRNA (MiRNA) expression profiles were detected by microarray and confirmed by real-time polymerase chain reaction (PCR). The target genes of differentially expressed miRNAs were predicted by miRWalk, and those targeted by multiple miRNAs were screened with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A regulatory miRNA network was constructed using ingenuity pathway analysis (IPA). Target gene expression of differentially expressed miRNAs was examined by real-time PCR or mRNA microarray. RESULTS: The results show that 50 ng/mL GDNF for 24 h significantly promotes U251 glioma cell proliferation and migration (P < 0.05). Seven miRNAs (hsa-miR-194-5p, hsa-miR-152-3p, hsa-miR-205-5p, hsa-miR-629-5p, hsa-miR-3609, hsa-miR-183-5p, and hsa-miR-487b-3p) were significantly up-regulated after GDNF treatment (P < 0.05). These miRNAs are primarily involved in signal transduction, cell adhesion and cell cycle through mitogen-activated protein kinase (MAPK) signaling, focal adhesion and glioma signal pathways. Five of these miRNAs (hsa-miR-194-5p, hsa-miR-152-3p, hsa-miR-205-5p, hsa-miR-183-5p, and hsa-miR-487b-3p) co-regulate TP53 and Akt. mRNA expression levels of four genes co-targeted by two or more up-regulated miRNAs were significantly decreased after GDNF treatment (P < 0.05). CONCLUSION: GDNF treatment of U251 glioma cells significantly increased the expression of seven miRNAs involved in cell adhesion and the cell cycle.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , MicroRNAs/metabolismo , Adesão Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Análise por Conglomerados , Glioma/metabolismo , Glioma/patologia , Humanos , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
Gut ; 63(10): 1587-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24440986

RESUMO

BACKGROUND: ClC-3 channel/antiporter plays a critical role in a variety of cellular activities. ClC-3 has been detected in the ileum and colon. OBJECTIVE: To determine the functions of ClC-3 in the gastrointestinal tract. DESIGN: After administration of dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS), intestines from ClC-3-/- and wild-type mice were examined by histological, cellular, molecular and biochemical approaches. ClC-3 expression was determined by western blot and immunostaining. RESULTS: ClC-3 expression was reduced in intestinal tissues from patients with UC or Crohn's disease and from mice treated with DSS. Genetic deletion of ClC-3 increased the susceptibility of mice to DSS- or TNBS-induced experimental colitis and prevented intestinal recovery. ClC-3 deficiency promoted DSS-induced apoptosis of intestinal epithelial cells through the mitochondria pathway. ClC-3 interacts with voltage-dependent anion channel 1, a key player in regulation of mitochondria cytochrome c release, but DSS treatment decreased this interaction. In addition, lack of ClC-3 reduced the numbers of Paneth cells and impaired the expression of antimicrobial peptides. These alterations led to dysfunction of the epithelial barrier and invasion of commensal bacteria into the mucosa. CONCLUSIONS: A defect in ClC-3 may contribute to the pathogenesis of IBD by promoting intestinal epithelial cell apoptosis and Paneth cell loss, suggesting that modulation of ClC-3 expression might be a new strategy for the treatment of IBD.


Assuntos
Antiporters/metabolismo , Canais de Cloreto/fisiologia , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Trato Gastrointestinal/metabolismo , Celulas de Paneth/patologia , Animais , Antiporters/efeitos dos fármacos , Apoptose , Western Blotting , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Trinitrobenzenossulfônico/toxicidade
16.
Environ Sci Technol ; 48(12): 6899-908, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24837526

RESUMO

Decomposition of octachloronaphthalene (CN-75) featuring fully substituted chlorines was investigated over as-prepared Fe3O4 micro/nanomaterial at 300 °C. It conforms to pseudo-first-order kinetics with kobs = 0.10 min(-1) as comparable to that of hexachlorobenzene and decachlorobiphenyl. Analysis of the products indicates that the degradation of CN-75 proceeds via two competitive hydrodechlorination and oxidation pathways. The onset of hydrodechlorination producing lower chlorinated naphthalenes (CNs) is more favored on α-position than ß-position. Higher amounts of CN-73, CN-66/67, CN-52/60, and CN-8/11 isomers were found, while small content difference was detected within the tetrachloronaphthalene and trichloronaphthalene homologues, which might be attributed to lower energy principle and steric effects. The important hydrodechlorination steps, leading to CN-73 ≫ CN-74 in two heptachloronaphthalene isomers contrary to that in technical PCN-mixtures, were specified by calculating the charge of natural bond orbitals in CN-75 and the energy of two heptachloronaphthalene radicals. On the basis of the molecular electrostatic potential of CN-75, the nucleophilic O(2-), and eletrophilic O2(-) and O(-), present on the Fe3O4 surface, might attack the carbon atom and π electron cloud of naphthalene ring, producing naphthol species with Mars-van Krevelen mechanism, and formic and acetic acids.


Assuntos
Compostos Férricos/química , Hidrocarbonetos Clorados/química , Nanoestruturas/química , Temperatura , Cromatografia Líquida de Alta Pressão , Isomerismo , Cinética , Conformação Molecular , Eletricidade Estática , Fatores de Tempo
17.
Phytomedicine ; 129: 155534, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583346

RESUMO

BACKGROUND: Severe respiratory system illness caused by influenza A virus infection is associated with excessive inflammation and abnormal apoptosis in alveolar epithelial cells (AEC). However, there are limited therapeutic options for influenza-associated lung inflammation and apoptosis. Pterostilbene (PTE, trans-3,5-dimethoxy-4-hydroxystilbene) is a dimethylated analog of resveratrol that has been reported to limit influenza A virus infection by promoting antiviral innate immunity, but has not been studied for its protective effects on virus-associated inflammation and injury in AEC. PURPOSE: Our study aimed to investigate the protective effects and underlying mechanisms of PTE in modulating inflammation and apoptosis in AEC, as well as its effects on macrophage polarization during influenza virus infection. STUDY DESIGN AND METHODS: A murine model of influenza A virus-mediated acute lung injury was established by intranasal inoculation with 5LD50 of mouse-adapted H1N1 viruses. Hematoxylin and eosin staining, immunofluorescence, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, Luminex and flow cytometry were performed. RESULTS: PTE effectively mitigated lung histopathological changes and injury induced by H1N1 viruses in vivo. These beneficial effects of PTE were attributed to the suppression of inflammation and apoptosis in AEC, as well as the modulation of M1 macrophage polarization. Mechanistic investigations revealed that PTE activated the phosphorylated AMP-activated protein kinase alpha (P-AMPKα)/sirtui1 (Sirt1)/PPARγ coactivator 1-alpha (PGC1α) signal axis, leading to the inhibition of nuclear factor kappa-B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling induced by H1N1 viruses, thereby attenuating inflammation and apoptosis in AEC. PTE also forced activation of the P-AMPKα/Sirt1/PGC1α signal axis in RAW264.7 cells, counteracting the activation of phosphorylated signal transducer and activator of transcription 1 (P-STAT1) induced by H1N1 viruses and the augment of P-STAT1 activation in RAW264.7 cells with interferon-gamma (IFN-γ) pretreatment before viral infection, thereby reducing H1N1 virus-mediated M1 macrophage polarization as well as the enhancement of macrophages into M1 phenotypes elicited by IFN-γ pretreatment. Additionally, the promotion of the transition of macrophages towards the M2 phenotype by PTE was also related to activation of the P-AMPKα/Sirt1/PGC1α signal axis. Moreover, co-culturing non-infected AEC with H1N1 virus-infected RAW264.7 cells in the presence of PTE inhibited apoptosis and tight junction disruption, which was attributed to the suppression of pro-inflammatory mediators and pro-apoptotic factors in an AMPKα-dependent manner. CONCLUSION: In conclusion, our findings suggest that PTE may serve as a promising novel therapeutic option for treating influenza-associated lung injury. Its ability to suppress inflammation and apoptosis in AEC, modulate macrophage polarization, and preserve alveolar epithelial cell integrity highlights its potential as a therapeutic agent in influenza diseases.


Assuntos
Lesão Pulmonar Aguda , Apoptose , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Sirtuína 1 , Estilbenos , Animais , Estilbenos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/virologia , Camundongos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sirtuína 1/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Células RAW 264.7 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , NF-kappa B/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/virologia , Pulmão/efeitos dos fármacos , Pulmão/virologia , Pulmão/patologia , Feminino
18.
ACS Chem Neurosci ; 15(11): 2223-2232, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38634698

RESUMO

Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.


Assuntos
Coenzima A Ligases , Ferroptose , Infarto da Artéria Cerebral Média , Pós-Condicionamento Isquêmico , Corpos Cetônicos , Neuroproteção , Ferroptose/fisiologia , Animais , Ratos , Pós-Condicionamento Isquêmico/métodos , Corpos Cetônicos/metabolismo , Masculino , Coenzima A Ligases/metabolismo , Neuroproteção/fisiologia , Ratos Sprague-Dawley , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , AVC Isquêmico/metabolismo , Acidente Vascular Cerebral/metabolismo , Neurônios/metabolismo
19.
Mol Neurobiol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023795

RESUMO

Caspase-12 is a caspase family member for which functions in regulating cell death and inflammation have previously been suggested. In this study, we used caspase-12 lacZ reporter mice to elucidate the expression pattern of caspase-12 in order to obtain an idea about its possible in vivo function. Strikingly, these reporter mice showed that caspase-12 is expressed explicitly in Purkinje neurons of the cerebellum. As this observation suggested a function for caspase-12 in Purkinje neurons, we analyzed the brain and behavior of caspase-12 deficient mice in detail. Extensive histological analyses showed that caspase-12 was not crucial for establishing cerebellum structure or for maintaining Purkinje cell numbers. We then performed behavioral tests to investigate whether caspase-12 deficiency affects memory, motor, and psychiatric functions in mice. Interestingly, while the absence of caspase-12 did not affect memory and motor function, caspase-12 deficient mice showed depression and hyperactivity tendencies, together resembling manic behavior. Next, suggesting a possible molecular mechanistic explanation, we showed that caspase-12 deficient cerebella harbored diminished signaling through the brain-derived neurotrophic factor/tyrosine kinase receptor B/cyclic-AMP response binding protein axis, as well as strongly enhanced expression of the neuronal activity marker c-Fos. Thus, our study establishes caspase-12 expression in mouse Purkinje neurons and opens novel avenues of research to investigate the role of caspase-12 in regulating psychiatric behavior.

20.
Mol Neurobiol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767837

RESUMO

Cerebral ischemia-reperfusion injury produces excessive reactive oxygen and nitrogen species, including superoxide, nitric oxide, and peroxynitrite (ONOO-). We recently developed a new ONOO--triggered metal-free carbon monoxide donor (PCOD585), exhibiting a notable neuroprotective outcome on the rat middle cerebral artery occlusion model and rendering an exciting intervention opportunity toward ischemia-induced brain injuries. However, its therapeutic mechanism still needs to be addressed. In the pharmacological study, we found PCOD585 inhibited neuronal Bcl2/Bax/caspase-3 apoptosis pathway in the peri-infarcted area of stroke by scavenging ONOO-. ONOO- scavenging further led to decreased Acyl-CoA synthetase long-chain family member 4 and increased glutathione peroxidase 4, to minimize lipoperoxidation. Additionally, the carbon monoxide release upon the ONOO- reaction with PCOD585 further inhibited the neuronal Iron-dependent ferroptosis associated with ischemia-reperfusion. Such a synergistic neuroprotective mechanism of PCOD585 yields as potent a neuroprotective effect as Edaravone. Additionally, PCOD585 penetrates the blood-brain barrier and reduces the degradation of zonula occludens-1 by inhibiting matrix metalloproteinase-9, thereby protecting the integrity of the blood-brain barrier. Our study provides a new perspective for developing multi-functional compounds to treat ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA