Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(2): 101535, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954143

RESUMO

Cancer cells frequently exhibit uncoupling of the glycolytic pathway from the TCA cycle (i.e., the "Warburg effect") and as a result, often become dependent on their ability to increase glutamine catabolism. The mitochondrial enzyme Glutaminase C (GAC) helps to satisfy this 'glutamine addiction' of cancer cells by catalyzing the hydrolysis of glutamine to glutamate, which is then converted to the TCA-cycle intermediate α-ketoglutarate. This makes GAC an intriguing drug target and spurred the molecules derived from bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (the so-called BPTES class of allosteric GAC inhibitors), including CB-839, which is currently in clinical trials. However, none of the drugs targeting GAC are yet approved for cancer treatment and their mechanism of action is not well understood. Here, we shed new light on the underlying basis for the differential potencies exhibited by members of the BPTES/CB-839 family of compounds, which could not previously be explained with standard cryo-cooled X-ray crystal structures of GAC bound to CB-839 or its analogs. Using an emerging technique known as serial room temperature crystallography, we were able to observe clear differences between the binding conformations of inhibitors with significantly different potencies. We also developed a computational model to further elucidate the molecular basis of differential inhibitor potency. We then corroborated the results from our modeling efforts using recently established fluorescence assays that directly read out inhibitor binding to GAC. Together, these findings should aid in future design of more potent GAC inhibitors with better clinical outlook.


Assuntos
Inibidores Enzimáticos , Glutaminase , Neoplasias , Sulfetos , Tiadiazóis , Cristalografia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Glutaminase/química , Glutaminase/metabolismo , Glutamina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sulfetos/química , Sulfetos/farmacologia , Temperatura , Tiadiazóis/química , Tiadiazóis/farmacologia
2.
Proteins ; 91(4): 518-531, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36369712

RESUMO

Transport of newly synthesized proteins from endoplasmic reticulum (ER) to Golgi is mediated by coat protein complex II (COPII). The assembly and disassembly of COPII vesicles is regulated by the molecular switch Sar1, which is a small GTPase and a component of COPII. Usually a small GTPase binds GDP (inactive form) or GTP (active form). Mammals have two Sar1 isoforms, Sar1a and Sar1b, that have approximately 90% sequence identity. Some experiments demonstrated that these two isoforms had distinct but overlapping functions. Here we found another instance of differing behavior: the alarmone ppGpp could bind to and inhibit the GTPase activity of human Sar1a but could not inhibit the GTPase activity of human Sar1b. The crystal structures of Sar1a⋅ppGpp and Sar1b⋅GDP have been determined. Superposition of the structures shows that ppGpp binds to the nucleotide-binding pocket, its guanosine base, ribose ring and 5'-diphosphate occupying nearly the same positions as for GDP. However, its 3'-diphosphate points away from the active site and, hence, away from the surface of the protein. The overall structure of Sar1a⋅ppGpp is more similar to Sar1b⋅GDP than to Sar1b⋅GTP. We also find that the Asp140-Arg138-water-ligand interaction net is important for the binding of ppGpp to Sar1a. This study provides further evidence showing that there are biochemical differences between the Sar1a and Sar1b isoforms of Sar1.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Animais , Humanos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Guanosina Tetrafosfato , Proteínas de Transporte Vesicular/metabolismo , Difosfatos/metabolismo , Isoformas de Proteínas/metabolismo , Mamíferos/metabolismo
3.
Proteins ; 91(3): 330-337, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36151846

RESUMO

The crystal structure of the complex of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from Archaeoglobus fulgidus (afRubisco) with its products 3PGAs has been determined to a resolution of 1.7 Å and is of the closed form. Type III Rubiscos such as afRubisco have 18 out of the 19 essential amino acid residues of canonical Rubisco; the 19th is Tyr rather than Phe. Superposition with the structure of a complex of the similar tkRubisco with the six-carbon intermediate analog 2CABP shows the same conformation of the 19 residues except for Glu46 and Thr51. Glu46 adopts a unique conformation different from that in other Rubiscos and makes two H-bonds with the ligand 3PGA. Similar to other closed state Rubiscos, the backbone of Thr51 is rotated and the side chain makes an H-bond with the ligand 3PGA. Two product 3PGA molecules are bound at the active site, overlapping well with the 2CABP of tkRubisco/2CABP. The positions of the P1 and P2 phosphate groups differ by 0.4 and 0.53 Å, respectively, between 2CABP and the two 3PGAs. This afRubisco/3PGA complex mimics an intermediate stage of the carboxylation reaction which occurs after the production of the two 3PGA products but before the reopening of the active site. The stability of this complex suggests that the Rubisco active site will not reopen before both 3PGA products are formed.


Assuntos
Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Cristalografia por Raios X , Conformação Proteica , Ligantes
4.
Mol Pharm ; 20(11): 5563-5578, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37782765

RESUMO

Understanding protein-protein interactions and formation of reversible oligomers (clusters) in concentrated monoclonal antibody (mAb) solutions is necessary for designing stable, low viscosity (η) concentrated formulations for processing and subcutaneous injection. Here we characterize the strength (K) of short-range anisotropic attractions (SRA) for 75-200 mg/mL mAb2 solutions at different pH and cosolute conditions by analyzing structure factors (Seff(q)) from small-angle X-ray scattering (SAXS) using coarse-grained molecular dynamics simulations. Best fit simulations additionally provide cluster size distributions, fractal dimensions, cluster occluded volume, and mAb coordination numbers. These equilibrium properties are utilized in a model to account for increases in viscosity caused by occluded volume in the clusters (packing effects) and dissipation of stress across lubricated fractal clusters. Seff(q) is highly sensitive to K at 75 mg/mL where mAbs can mutually align to form SRA contacts but becomes less sensitive at 200 mg/mL as steric repulsion due to packing becomes dominant. In contrast, η at 200 mg/mL is highly sensitive to SRA and the average cluster size from SAXS/simulation, which is observed to track the cluster relaxation time from shear thinning. By analyzing the distribution of sub-bead hot spots on the 3D mAb surface, we identify a strongly attractive hydrophobic patch in the complementarity determining region (CDR) at pH 4.5 that contributes to the high K and consequently large cluster sizes and high η. Adding NaCl screens electrostatic interactions and increases the impact of hydrophobic attraction on cluster size and raises η, whereas nonspecific binding of Arg attenuates all SRA, reducing η. The hydrophobic patch is absent at higher pH values, leading to smaller K, smaller clusters, and lower η. This work constitutes a first attempt to use SAXS and CG modeling to link both structural and rheological properties of concentrated mAb solutions to the energetics of specific hydrophobic patches on mAb surfaces. As such, our work opens an avenue for future research, including the possibility of designing coarse-grained models with physically meaningful interacting hot spots.


Assuntos
Anticorpos Monoclonais , Simulação de Dinâmica Molecular , Anticorpos Monoclonais/química , Espalhamento a Baixo Ângulo , Viscosidade , Raios X , Difração de Raios X
5.
Biomacromolecules ; 24(11): 4771-4782, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37815312

RESUMO

Complex coacervation refers to the liquid-liquid phase separation (LLPS) process occurring between charged macromolecules. The study of complex coacervation is of great interest due to its implications in the formation of membraneless organelles (MLOs) in living cells. However, the impacts of the crowded intracellular environment on the behavior and interactions of biomolecules involved in MLO formation are not fully understood. To address this knowledge gap, we investigated the effects of crowding on a model protein-polymer complex coacervate system. Specifically, we examined the influence of sucrose as a molecular crowder and polyethylene glycol (PEG) as a macromolecular crowder. Our results reveal that the presence of crowders led to the formation of larger coacervate droplets that remained stable over a 25-day period. While sucrose had a minimal effect on the physical properties of the coacervates, PEG led to the formation of coacervates with distinct characteristics, including higher density, increased protein and polymer content, and a more compact internal structure. These differences in coacervate properties can be attributed to the effects of crowders on individual macromolecules, such as the conformation of model polymers, and nonspecific interactions among model protein molecules. Moreover, our results show that sucrose and PEG have different partition behaviors: sucrose was present in both the coacervate and dilute phases, while PEG was observed to be excluded from the coacervate phase. Collectively, our findings provide insights into the understanding of crowding effects on complex coacervation, shedding light on the formation and properties of coacervates in the context of MLOs.


Assuntos
Polímeros , Proteínas , Polímeros/química , Proteínas/química , Polietilenoglicóis/química , Substâncias Macromoleculares/química , Sacarose
6.
Biomacromolecules ; 24(8): 3700-3715, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37478325

RESUMO

While solution micellization of ionic block copolymers (BCP) with randomly distributed ionization sites along the hydrophilic segments has been extensively studied, the roles of positionally controlled ionization sites along the BCP chains in their micellization and resulting micellar structure remain comparatively less understood. Herein, three amphoteric polypeptoid block copolymers carrying two oppositely charged ionizable sites, with one fixed at the hydrophobic terminus and the other varyingly positioned along the hydrophilic segment, have been synthesized by sequential ring-opening polymerization method. The presence of the ionizable site at the hydrophobic segment terminus is expected to promote polymer association toward equilibrium micellar structures in an aqueous solution. The concurrent presence of oppositely charged ionizable sites on the polymer chains allows the polymer association to be electrostatically modulated in a broad pH range (ca. 2-12). Micellization of the amphoteric polypeptoid BCP in dilute aqueous solution and the resulting micellar structure at different solution pHs was investigated by a combination of scattering and microscopic methods. Negative-stain transmission-electron microscopy (TEM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) analyses revealed the dominant presence of core-shell-type spherical micelles and occasional rod-like micelles with liquid crystalline (LC) domains in the micellar core. The micellar structures (e.g., aggregation number, radius of gyration, chain packing in the micelle) were found to be dependent on the solution pH and the position of the ionizable site along the chain. This study has highlighted the potential of controlling the position of ionizable sites along the BCP polymer to modulate the electrostatic and LC interactions, thus tailoring the micellar structure at different solution pH values in water.


Assuntos
Micelas , Polímeros , Espalhamento a Baixo Ângulo , Difração de Raios X , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas
7.
Proc Natl Acad Sci U S A ; 116(9): 3524-3529, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733287

RESUMO

RAP1-interacting adapter molecule (RIAM) mediates RAP1-induced integrin activation. The RAS-association (RA) segment of the RA-PH module of RIAM interacts with GTP-bound RAP1 and phosphoinositol 4,5 bisphosphate but this interaction is inhibited by the N-terminal segment of RIAM. Here we report the structural basis for the autoinhibition of RIAM by an intramolecular interaction between the IN region (aa 27-93) and the RA-PH module. We solved the crystal structure of IN-RA-PH to a resolution of 2.4-Å. The structure reveals that the IN segment associates with the RA segment and thereby suppresses RIAM:RAP1 association. This autoinhibitory configuration of RIAM can be released by phosphorylation at Tyr45 in the IN segment. Specific inhibitors of focal adhesion kinase (FAK) blocked phosphorylation of Tyr45, inhibited stimulated translocation of RIAM to the plasma membrane, and inhibited integrin-mediated cell adhesion in a Tyr45-dependent fashion. Our results reveal an unusual regulatory mechanism in small GTPase signaling by which the effector molecule is autoinhibited for GTPase interaction, and a modality of integrin activation at the level of RIAM through a FAK-mediated feedforward mechanism that involves reversal of autoinhibition by a tyrosine kinase associated with integrin signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Integrinas/química , Proteínas de Membrana/química , Conformação Proteica , Proteínas de Ligação a Telômeros/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Adesão Celular/genética , Membrana Celular/química , Cristalografia por Raios X , Proteína-Tirosina Quinases de Adesão Focal/química , Proteína-Tirosina Quinases de Adesão Focal/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Humanos , Proteínas de Membrana/genética , Fosforilação , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/genética
8.
J Biol Chem ; 293(10): 3535-3545, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317493

RESUMO

Altered glycolytic flux in cancer cells (the "Warburg effect") causes their proliferation to rely upon elevated glutamine metabolism ("glutamine addiction"). This requirement is met by the overexpression of glutaminase C (GAC), which catalyzes the first step in glutamine metabolism and therefore represents a potential therapeutic target. The small molecule CB-839 was reported to be more potent than other allosteric GAC inhibitors, including the parent compound bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl (BPTES), and is in clinical trials. Recently, we described the synthesis of BPTES analogs having distinct saturated heterocyclic cores as a replacement for the flexible chain moiety, with improved microsomal stability relative to CB-839 and BPTES. Here, we show that one of these new compounds, UPGL00004, like CB-839, more potently inhibits the enzymatic activity of GAC, compared with BPTES. We also compare the abilities of UPGL00004, CB-839, and BPTES to directly bind to recombinant GAC and demonstrate that UPGL00004 has a similar binding affinity as CB-839 for GAC. We also show that UPGL00004 potently inhibits the growth of triple-negative breast cancer cells, as well as tumor growth when combined with the anti-vascular endothelial growth factor antibody bevacizumab. Finally, we compare the X-ray crystal structures for UPGL00004 and CB-839 bound to GAC, verifying that UPGL00004 occupies the same binding site as CB-839 or BPTES and that all three inhibitors regulate the enzymatic activity of GAC via a similar allosteric mechanism. These results provide insights regarding the potency of these inhibitors that will be useful in designing novel small-molecules that target a key enzyme in cancer cell metabolism.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Modelos Moleculares , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Sítio Alostérico/efeitos dos fármacos , Substituição de Aminoácidos , Antineoplásicos/química , Antineoplásicos/metabolismo , Benzenoacetamidas/química , Benzenoacetamidas/metabolismo , Benzenoacetamidas/farmacologia , Ligação Competitiva , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glutaminase/química , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/antagonistas & inibidores , Glutamina/química , Glutamina/metabolismo , Humanos , Ligação de Hidrogênio , Conformação Molecular , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Sulfetos/farmacologia , Tiadiazóis/química , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
9.
J Biol Chem ; 291(40): 20900-20910, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27542409

RESUMO

Glutamine-derived carbon becomes available for anabolic biosynthesis in cancer cells via the hydrolysis of glutamine to glutamate, as catalyzed by GAC, a splice variant of kidney-type glutaminase (GLS). Thus, there is significant interest in understanding the regulation of GAC activity, with the suggestion being that higher order oligomerization is required for its activation. We used x-ray crystallography, together with site-directed mutagenesis, to determine the minimal enzymatic unit capable of robust catalytic activity. Mutagenesis of the helical interface between the two pairs of dimers comprising a GAC tetramer yielded a non-active, GAC dimer whose x-ray structure displays a stationary loop ("activation loop") essential for coupling the binding of allosteric activators like inorganic phosphate to catalytic activity. Further mutagenesis that removed constraints on the activation loop yielded a constitutively active dimer, providing clues regarding how the activation loop communicates with the active site, as well as with a peptide segment that serves as a "lid" to close off the active site following substrate binding. Our studies show that the formation of large GAC oligomers is not a pre-requisite for full enzymatic activity. They also offer a mechanism by which the binding of activators like inorganic phosphate enables the activation loop to communicate with the active site to ensure maximal rates of catalysis, and promotes the opening of the lid to achieve optimal product release. Moreover, these findings provide new insights into how other regulatory events might induce GAC activation within cancer cells.


Assuntos
Glutaminase/metabolismo , Glutamina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Multimerização Proteica , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Glutaminase/química , Glutaminase/genética , Glutamina/química , Glutamina/genética , Humanos , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Estrutura Secundária de Proteína
10.
Bioorg Med Chem ; 24(8): 1819-39, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26988803

RESUMO

A novel set of GAC (kidney glutaminase isoform C) inhibitors able to inhibit the enzymatic activity of GAC and the growth of the triple negative MDA-MB-231 breast cancer cells with low nanomolar potency is described. Compounds in this series have a reduced number of rotatable bonds, improved ClogPs, microsomal stability and ligand efficiency when compared to the leading GAC inhibitors BPTES and CB-839. Property improvements were achieved by the replacement of the flexible n-diethylthio or the n-butyl moiety present in the leading inhibitors by heteroatom substituted heterocycloalkanes.


Assuntos
Benzenoacetamidas/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Sulfetos/farmacologia , Tiadiazóis/farmacologia , Benzenoacetamidas/química , Benzenoacetamidas/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glutaminase/metabolismo , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Sulfetos/química , Sulfetos/metabolismo , Tiadiazóis/química , Tiadiazóis/metabolismo
11.
Commun Biol ; 7(1): 59, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216663

RESUMO

Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature versus. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Altogether, our work indicates that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.


Assuntos
Proteínas , Temperatura , Modelos Moleculares , Proteínas/química , Conformação Molecular
12.
J Biol Chem ; 287(43): 35943-52, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22942283

RESUMO

The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the ß1-α1 loop.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Endodesoxirribonucleases/química , Multimerização Proteica , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Sequências Repetidas Invertidas , Magnésio/química , Magnésio/metabolismo , Manganês/química , Manganês/metabolismo , Mutagênese , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
13.
Nature ; 449(7159): 243-7, 2007 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-17694048

RESUMO

Pathogenic microbes use effectors to enhance susceptibility in host plants. However, plants have evolved a sophisticated immune system to detect these effectors using cognate disease resistance proteins, a recognition that is highly specific, often elicits rapid and localized cell death, known as a hypersensitive response, and thus potentially limits pathogen growth. Despite numerous genetic and biochemical studies on the interactions between pathogen effector proteins and plant resistance proteins, the structural bases for such interactions remain elusive. The direct interaction between the tomato protein kinase Pto and the Pseudomonas syringae effector protein AvrPto is known to trigger disease resistance and programmed cell death through the nucleotide-binding site/leucine-rich repeat (NBS-LRR) class of disease resistance protein Prf. Here we present the crystal structure of an AvrPto-Pto complex. Contrary to the widely held hypothesis that AvrPto activates Pto kinase activity, our structural and biochemical analyses demonstrated that AvrPto is an inhibitor of Pto kinase in vitro. The AvrPto-Pto interaction is mediated by the phosphorylation-stabilized P+1 loop and a second loop in Pto, both of which negatively regulate the Prf-mediated defences in the absence of AvrPto in tomato plants. Together, our results show that AvrPto derepresses host defences by interacting with the two defence-inhibition loops of Pto.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Pseudomonas syringae/fisiologia , Solanum lycopersicum/imunologia , Cristalografia por Raios X , Solanum lycopersicum/enzimologia , Solanum lycopersicum/microbiologia , Fosforilação , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Inibidores de Proteínas Quinases/imunologia , Pseudomonas syringae/química , Pseudomonas syringae/imunologia
14.
J Pharm Sci ; 112(3): 731-739, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36150467

RESUMO

Multi-injection pharmaceutical products such as insulin must be formulated to prevent aggregation and microbial contamination. Small-molecule preservatives and nonionic surfactants such as poloxamer 188 (P188) are thus often employed in protein drug formulations. However, mixtures of preservatives and surfactants can induce aggregation and even phase separation over time, despite the fact that all components are well dissolvable when used alone in aqueous solution. A systematic study is conducted here to understand the phase behavior and morphological causes of aggregation of P188 in the presence of the preservatives phenol and benzyl alcohol, primarily using small-angle x-ray scattering (SAXS). Based on SAXS results, P188 remains as unimers in solution when below a certain phenol concentration. Upon increasing the phenol concentration, a regime of micelle formation is observed due to the interaction between P188 and phenol. Further increasing the phenol concentration causes mixtures to become turbid and phase-separate over time. The effect of benzyl alcohol on the phase behavior is also investigated.


Assuntos
Micelas , Poloxâmero , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Tensoativos , Água , Conservantes Farmacêuticos , Fenóis , Álcoois Benzílicos , Soluções
15.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205580

RESUMO

Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature vs. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes novel interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Together, our work argues that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.

16.
Mol Microbiol ; 79(3): 584-99, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21255106

RESUMO

A widespread feature in the genomes of most bacteria and archaea is an array of clustered, regularly interspaced short palindromic repeats (CRISPRs) that, together with a group of CRISPR-associated (Cas) proteins, mediate immunity against invasive nucleic acids such as plasmids and viruses. Here, the CRISPR-Cas system was activated in cells expressing a plasmid-encoded protein that was targeted to the twin-arginine translocation (Tat) pathway. Expression of this Tat substrate resulted in upregulation of the Cas enzymes and subsequent silencing of the encoding plasmid in a manner that required the BaeSR two-component regulatory system, which is known to respond to extracytoplasmic stress. Furthermore, we confirm that the CasCDE enzymes form a stable ternary complex and appear to function as the catalytic core of the Cas system to process CRISPR RNA into its mature form. Taken together, our results indicate that the CRISPR-Cas system targets DNA directly as part of a defence mechanism in bacteria that is overlapping with but not limited to phage infection.


Assuntos
DNA Bacteriano/genética , Escherichia coli/genética , Inativação Gênica , Sequências Repetidas Invertidas/genética , RNA Bacteriano/metabolismo , Estresse Fisiológico/genética , Sequência de Bases , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Proteínas de Fluorescência Verde/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Mutação/genética , Oxirredutases N-Desmetilantes/metabolismo , Plasmídeos/genética , Células Procarióticas/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/metabolismo , Transdução de Sinais/genética
17.
ACS Omega ; 7(7): 6184-6194, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224382

RESUMO

Many industrial processes operate at elevated temperatures or within broad pH and salinity ranges. However, the utilization of enzymes to carry out biocatalysis in such processes is often impractical or even impossible. Laccases (EC 1.10.3.2), which constitute a large family of multicopper oxidases, have long been used in the industrial setting. Although fungal laccases are in many respects considered superior to their bacterial counterparts, the bacterial laccases have been receiving greater attention recently. Albeit lower in redox potential than fungal laccases, bacterial laccases are commonly thermally more stable, act within broader pH ranges, do not contain posttranslational modifications, and could therefore serve as a high potential scaffold for directed evolution for the production of enzymes with enhanced properties. Several examples focusing on the axial ligand mutations of the T1 copper site have been published in the past. However, structural evidence on the local and global changes induced by those mutations have thus far been of computational nature only. In this study, we set out to structurally and kinetically characterize a few of the most commonly reported axial ligand mutations of a bacterial small laccase (SLAC) from Streptomyces coelicolor. While one of the mutations (Met to Leu) equips the enzyme with better thermal stability, the other (Met to Phe) induces an opposite effect. These mutations cause local structural rearrangement of the T1 site as demonstrated by X-ray crystallography. Our analysis confirms past findings that for SLACs, single point mutations that change the identity of the axial ligand of the T1 copper are not enough to provide a substantial increase in the catalytic efficiency but can in some cases have a detrimental effect on the enzyme's thermal stability parameters instead.

18.
Protein Sci ; 31(12): e4489, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36320105

RESUMO

As continuing discoveries highlight the surprising abundance and resilience of deep ocean and subsurface microbial life, the effects of extreme hydrostatic pressure on biological structure and function have attracted renewed interest. Biological small-angle X-ray scattering (BioSAXS) is a widely used method of obtaining structural information from biomolecules in solution under a wide range of solution conditions. Due to its ability to reduce radiation damage, remove aggregates, and separate monodisperse components from complex mixtures, size-exclusion chromatography-coupled SAXS (SEC-SAXS) is now the dominant form of BioSAXS at many synchrotron beamlines. While BioSAXS can currently be performed with some difficulty under pressure with non-flowing samples, it has not been clear how, or even if, continuously flowing SEC-SAXS, with its fragile media-packed columns, might work in an extreme high-pressure environment. Here we show, for the first time, that reproducible chromatographic separations coupled directly to high-pressure BioSAXS can be achieved at pressures up to at least 100 MPa and that pressure-induced changes in folding and oligomeric state and other properties can be observed. The apparatus described here functions at a range of temperatures (0°C-50°C), expanding opportunities for understanding biomolecular rules of life in deep ocean and subsurface environments.


Assuntos
Espalhamento a Baixo Ângulo , Difração de Raios X , Pressão Hidrostática , Raios X , Cromatografia em Gel
19.
J Biol Chem ; 285(53): 42130-9, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20980250

RESUMO

In addition to inhibiting insulin receptor and IGF1R kinase activity by directly binding to the receptors, GRB10 can also negatively regulate insulin and IGF1 signaling by mediating insulin receptor and IGF1R degradation through ubiquitination. It has been shown that GRB10 can interact with the C2 domain of the E3 ubiquitin ligase NEDD4 through its Src homology 2 (SH2) domain. Therefore, GRB10 might act as a connector, bringing NEDD4 close to IGF1R to facilitate the ubiquitination of IGF1R by NEDD4. This is the first case in which it has been found that an SH2 domain could colocalize a ubiquitin ligase and its substrate. Here we report the crystal structure of the NEDD4 C2-GRB10 SH2 complex at 2.0 Å. The structure shows that there are three interaction interfaces between NEDD4 C2 and GRB10 SH2. The main interface centers on an antiparallel ß-sheet composed of the F ß-strand of GRB10 SH2 and the C ß-strand of NEDD4 C2. NEDD4 C2 binds at nonclassical sites on the SH2 domain surface, far from the classical phosphotyrosine-binding pocket. Hence, this interaction is phosphotyrosine-independent, and GRB10 SH2 can bind the C2 domain of NEDD4 and the kinase domain of IGF1R simultaneously. Based on these results, a model of how NEDD4 interacts with IGF1R through GRB10 has been proposed. This report provides further evidence that SH2 domains can participate in important signaling interactions beyond the classical recognition of phosphotyrosine.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteína Adaptadora GRB10/metabolismo , Regulação Enzimológica da Expressão Gênica , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X/métodos , DNA Complementar/metabolismo , Íons , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ubiquitina-Proteína Ligases Nedd4 , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
20.
J Appl Crystallogr ; 54(Pt 1): 111-122, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33841059

RESUMO

Pressure is a fundamental thermodynamic parameter controlling the behavior of biological macromolecules. Pressure affects protein denaturation, kinetic parameters of enzymes, ligand binding, membrane permeability, ion trans-duction, expression of genetic information, viral infectivity, protein association and aggregation, and chemical processes. In many cases pressure alters the molecular shape. Small-angle X-ray scattering (SAXS) is a primary method to determine the shape and size of macromolecules. However, relatively few SAXS cells described in the literature are suitable for use at high pressures and with biological materials. Described here is a novel high-pressure SAXS sample cell that is suitable for general facility use by prioritization of ease of sample loading, temperature control, mechanical stability and X-ray background minimization. Cell operation at 14 keV is described, providing a q range of 0.01 < q < 0.7 Å-1, pressures of 0-400 MPa and an achievable temperature range of 0-80°C. The high-pressure SAXS cell has recently been commissioned on the ID7A beamline at the Cornell High Energy Synchrotron Source and is available to users on a peer-reviewed proposal basis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA