Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2211258120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577063

RESUMO

The retromer is a heteromeric protein complex that localizes to endosomal membranes and drives the formation of endosomal tubules that recycle membrane protein cargoes. In plants, the retromer plays essential and canonical functions in regulating the transport of vacuolar storage proteins and the recycle of endocytosed plasma membrane proteins (PM); however, the mechanisms underlying the regulation of assembly, protein stability, and membrane recruitment of the plant retromer complex remain to be elucidated. In this study, we identify a plant-unique endosomal regulator termed BLISTER (BLI), which colocalizes and associates with the retromer complex by interacting with the retromer core subunits VPS35 and VPS29. Depletion of BLI perturbs the assembly and membrane recruitment of the retromer core VPS26-VPS35-VPS29 trimer. Consequently, depletion of BLI disrupts retromer-regulated endosomal trafficking function, including transport of soluble vacuolar proteins and recycling of endocytosed PIN-FORMED (PIN) proteins from the endosomes back to the PM. Moreover, genetic analysis in Arabidopsis thaliana mutants reveals BLI and core retromer interact genetically in the regulation of endosomal trafficking. Taken together, we identified BLI as a plant-specific endosomal regulator, which functions in retromer pathway to modulate the recycling of endocytosed PM proteins and the trafficking of soluble vacuolar cargoes.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico , Endossomos/metabolismo , Vacúolos/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Arabidopsis/metabolismo , Nexinas de Classificação/metabolismo
2.
Plant Cell ; 34(6): 2242-2265, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262735

RESUMO

WRINKLED1 (WRI1) is an important transcription factor that regulates seed oil biosynthesis. However, how WRI1 regulates gene expression during this process remains poorly understood. Here, we found that BLISTER (BLI) is expressed in maturing Arabidopsis thaliana seeds and acts as an interacting partner of WRI1. bli mutant seeds showed delayed maturation, a wrinkled seed phenotype, and reduced oil content, similar to the phenotypes of wri1. In contrast, BLI overexpression resulted in enlarged seeds and increased oil content. Gene expression and genetic analyses revealed that BLI plays a role in promoting the expression of WRI1 targets involved in fatty acid biosynthesis and regulates seed maturation together with WRI1. BLI is recruited by WRI1 to the AW boxes in the promoters of fatty acid biosynthesis genes. BLI shows a mutually exclusive interaction with the Polycomb-group protein CURLY LEAF (CLF) or the chromatin remodeling factor SWITCH/SUCROSE NONFERMENTING 3B (SWI3B), which facilitates gene expression by modifying nucleosomal occupancy and histone modifications. Together, these data suggest that BLI promotes the expression of fatty acid biosynthesis genes by interacting with WRI1 to regulate chromatin dynamics, leading to increased fatty acid production. These findings provide insights into the roles of the WRI1-BLI-CLF-SWI3B module in mediating seed maturation and gene expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
PLoS Pathog ; 18(6): e1010584, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696408

RESUMO

Escherichia coli F18 is a common conditional pathogen that is associated with a variety of infections in humans and animals. LncRNAs have emerged as critical players in pathogen infection, but their role in the resistance of the host to bacterial diarrhea remains unknown. Here, we used piglets as animal model and identified an antisense lncRNA termed FUT3-AS1 as a host regulator related to E. coli F18 infection by RNA sequencing. Downregulation of FUT3-AS1 expression contributed to the enhancement of E. coli F18 resistance in IPEC-J2 cells. FUT3-AS1 knockdown reduced FUT3 expression via decreasing the H4K16ac level of FUT3 promoter. Besides, the FUT3-AS1/miR-212 axis could act as a competing endogenous RNA to regulate FUT3 expression. Functional analysis demonstrated that target FUT3 plays a vital role in the resistance of IPEC-J2 cells to E. coli F18 invasion. A Fut3-knockout mice model was established and Fut3-knockout mice obviously improved the ability of resistance to bacterial diarrhea. Interestingly, FUT3 could enhance E. coli F18 susceptibility by activating glycosphingolipid biosynthesis and toll-like receptor signaling which are related to receptor formation and immune response, respectively. In summary, we have identified a novel biomarker FUT3-AS1 that modulates E. coli F18 susceptibility via histone H4 modifications or miR-212/FUT3 axis, which will provide theoretical guidance to develop novel strategies for combating bacterial diarrhea in piglets.


Assuntos
Infecções por Escherichia coli , MicroRNAs , RNA Longo não Codificante , Doenças dos Suínos , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Diarreia/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Regulação Neoplásica da Expressão Gênica , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Doenças dos Suínos/genética
4.
Plant Physiol ; 191(3): 1871-1883, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36464768

RESUMO

Changes in plant auxin levels can be perceived and converted into cellular responses by auxin signal transduction. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are auxin transcriptional inhibitors that play important roles in regulating auxin signal transduction. The stability of Aux/IAA proteins is important for transcription initiation and downstream auxin-related gene expression. Here, we report that the Aux/IAA protein IAA17 interacts with the small ubiquitin-related modifier (SUMO) E3 ligase METHYL METHANESULFONATE-SENSITIVE 21 (AtMMS21) in Arabidopsis (Arabidopsis thaliana). AtMMS21 regulated the SUMOylation of IAA17 at the K41 site. Notably, root length was suppressed in plants overexpressing IAA17, whereas the roots of K41-mutated IAA17 transgenic plants were not significantly different from wild-type roots. Biochemical data indicated that K41-mutated IAA17 or IAA17 in the AtMMS21 knockout mutant was more likely to be degraded compared with nonmutated IAA17 in wild-type plants. In conclusion, our data revealed a role for SUMOylation in the maintenance of IAA17 protein stability, which contributes to improving our understanding of the mechanisms of auxin signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais , Sumoilação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Anim Genet ; 55(2): 206-216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191772

RESUMO

Teat number (TNUM) is an important reproductive trait of sows, which affects the weaning survival rate of piglets. In this study, 1166 Dutch Large White pigs with TNUM phenotype were used as the research object. These pigs were genotyped by 50K SNP chip and the chip data were further imputed to the resequencing level. The estimated heritabilities of left teat number (LTN), right teat number (RTN) and total teat number (TTN) were 0.21, 0.19 and 0.3, respectively. Based on chip data, significant SNPs for RTN on SSC2, SSC5, SSC9 and SSC13 were identified using genome-wide association analysis (GWAS). Significant SNPs for TTN were identified on SSC2, SSC5 and SSC7. Based on imputed data, the GWAS identified a significant SNP (rs329158522) for LTN on SSC17, two significant SNPs (rs342855242 and rs80813115) for RTN on SSC2 and SSC9, and two significant SNPs (rs327003548 and rs326943811) for TTN on SSC5 and SSC6. Among them, four novel QTL were discovered. The Bayesian fine-mapping method was used to fine map the QTL identified in the GWAS of the imputed data, and the confidence intervals of QTL affecting LTN (SSC17: 45.22-46.20 Mb), RTN (SSC9: 122.18-122.80 Mb) and TTN (SSC5: 14.01-15.91 Mb, SSC6: 120.06-121.25 Mb) were detected. A total of 52 candidate genes were obtained. Furthermore, we identified five candidate genes, WNT10B, AQP5, FMNL3, NUAK1 and CKAP4, for the first time, which involved in breast development and other related functions by gene annotation. Overall, this study provides new molecular markers for the breeding of teat number in pigs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Suínos/genética , Animais , Feminino , Estudo de Associação Genômica Ampla/veterinária , Teorema de Bayes , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Anim Genet ; 55(3): 471-474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38618678

RESUMO

This work aimed to identify markers and candidate genes underlying porcine digestive traits. In total, 331 pigs were genotyped by 80 K Chip data or 50 K Chip data. For apparent neutral detergent fiber digestibility, a total of 19 and 21 candidate single nucleotide polymorphisms (SNP) were respectively identified using a genome-wide efficient mixed-model association algorithm and linkage-disequilibrium adjusted kinship. Among them, three quantitative trait locus (QTL) regions were identified. For apparent acid detergent fiber digestibility, a total of 16 and 17 SNPs were identified by these two methods, respectively. Of these, three QTL regions were also identified. Moreover, two candidate genes (MST1 and LATS1), which are functionally related to intestinal homeostasis and health, were detected near these significant SNPs. Taken together, our results could provide a basis for deeper research on digestive traits in pigs.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sus scrofa , Animais , Sus scrofa/genética , Estudo de Associação Genômica Ampla/veterinária , Digestão/genética , Desequilíbrio de Ligação , Genótipo
7.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256277

RESUMO

The introduction of single-cell RNA sequencing (scRNA-seq) technology has spurred additional advancements in analyzing the cellular composition of tissues. The longissimus dorsi (LD) in pigs serves as the primary skeletal muscle for studying meat quality in the pig industry. However, the single-cell profile of porcine LD is still in its infancy stage. In this study, we profiled the transcriptomes of 16,018 cells in the LD of a newborn Suhuai pig at single-cell resolution. Subsequently, we constructed a cellular atlas of the LD, identifying 11 distinct cell populations, including endothelial cells (24.39%), myotubes (18.82%), fibro-adipogenic progenitors (FAPs, 18.11%), satellite cells (16.74%), myoblasts (3.99%), myocytes (5.74%), Schwann cells (3.81%), smooth muscle cells (3.22%), dendritic cells (2.99%), pericytes (1.86%), and neutrophils (0.33%). CellChat was employed to deduce the cell-cell interactions by evaluating the gene expression of receptor-ligand pairs across different cell types. The results show that FAPs and pericytes are the primary signal contributors in LD. In addition, we delineated the developmental trajectory of myogenic cells and examined alterations in the expression of various marker genes and molecular events throughout various stages of differentiation. Moreover, we found that FAPs can be divided into three subclusters (NR2F2-FAPs, LPL-FAPs, and TNMD-FAPs) according to their biological functions, suggesting that the FAPs could be associated with the differentiation of tendon cell. Taken together, we constructed the cellular atlas and cell communication network in LD of a newborn Suhuai pig, and analyzed the developmental trajectory of myogenic cells and the heterogeneity of FAPs subpopulation cells. This enhances our comprehension of the molecular features involved in skeletal muscle development and the meat quality control in pigs.


Assuntos
Células Endoteliais , Fibras Musculares Esqueléticas , Suínos , Animais , Diferenciação Celular , Pericitos , Análise de Sequência de RNA
8.
BMC Genomics ; 24(1): 733, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049711

RESUMO

BACKGROUND: Eurasian pigs have undergone lineage admixture throughout history. It has been confirmed that the genes of indigenous pig breeds in China have been introduced into Western commercial pigs, providing genetic materials for breeding Western pigs. Pigs in Taihu Lake region (TL), such as the Meishan pig and Erhualian pig, serve as typical representatives of indigenous pig breeds in China due to their high reproductive performances. These pigs have also been imported into European countries in 1970 and 1980 s. They have played a positive role in improving the reproductive performances in European commercial pigs such as French Large White pigs (FLW). However, it is currently unclear if the lineage of TL pigs have been introgressed into the Danish Large White pigs (DLW), which are also known for their high reproductive performances in European pigs. To systematically identify genomic regions in which TL pigs have introgressed into DLW pigs and their physiological functions, we collected the re-sequencing data from 304 Eurasian pigs, to identify shared haplotypes between DLW and TL pigs. RESULTS: The findings revealed the presence of introgressed genomic regions from TL pigs in the genome of DLW pigs indeed. The genes annotated within these regions were found to be mainly enriched in neurodevelopmental pathways. Furthermore, we found that the 115 kb region located in SSC16 exhibited highly shared haplotypes between TL and DLW pigs. The major haplotype of TL pigs in this region could significantly improve reproductive performances in various pig populations. Around this genomic region, NDUFS4 gene was highly expressed and showed differential expression in multiple reproductive tissues between extremely high and low farrowing Erhualian pigs. This suggested that NDUFS4 gene could be an important candidate causal gene responsible for affecting the reproductive performances of DLW pigs. CONCLUSIONS: Our study has furthered our knowledge of the pattern of introgression from TL into DLW pigs and the potential effects on the fertility of DLW pigs.


Assuntos
Lagos , Sus scrofa , Suínos/genética , Animais , Sus scrofa/genética , Genoma , Fertilidade/genética , Polimorfismo de Nucleotídeo Único , Dinamarca
9.
Anim Genet ; 54(3): 295-306, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36727217

RESUMO

Meat color is an attractive trait that influences consumers' purchase decisions at the point of sale. To decipher the genetic basis of meat color traits, we performed a genome-wide association study based on low-coverage whole-genome sequencing. In total, 669 (Pietrain × Duroc) × (Landrace × Yorkshire) pigs were genotyped using low-coverage whole-genome sequencing. Single nucleotide polymorphism (SNP) calling and genotype imputation were performed using the BaseVar + STITCH channel. Six individuals with an average depth of 12.05× whole-genome resequencing were randomly selected to assess the accuracy of imputation. Heritability evaluation and genome-wide association study for meat color traits were conducted. Functional enrichment analysis of the candidate genes from genome-wide association study and integration analysis with our previous transcriptome data were conducted. The imputation accuracy parameters, allele frequency R2 , concordance rate, and dosage R2 were 0.959, 0.952, and 0.933, respectively. The heritability values of a*45 min , b*45 min , L*45 min , C*, and H0 were 0.19, 0.11, 0.06, 0.16, and 0.26, respectively. In total, 3884 significant SNPs and 15 QTL, corresponding to 382 genes, were associated with meat color traits. Functional enrichment analysis revealed that 10 genes were the potential candidates for regulating meat color. Moreover, integration analysis revealed that DMRT2, EFNA5, FGF10, and COL11A2 were the most promising candidates affecting meat color. In summary, this study provides new insights into the molecular basis of meat color traits, and provides a new theoretical basis for the molecular breeding of meat color traits in pigs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Suínos , Animais , Carne/análise , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Perfilação da Expressão Gênica , Sequenciamento Completo do Genoma
10.
Anim Genet ; 54(4): 435-445, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36911996

RESUMO

The number of ribs (NR) and carcass length (CL) are important economic traits in pig breeding programs. Pigs with a higher NR and longer CL produce greater pork yields. In the present study, Suhuai pigs with NR and CL phenotypes were genotyped using the Neogen® GGP Porcine 80 K SNP array to identify the QTL affecting NR and CL and dissect the candidate genes for the two traits. The SNP-chip data was imputed to the whole-genome sequence (iWGS) to increase the probability of identifying causal variants. Through genome-wide association studies (GWAS) based on both chip and iWGS data, significant SNPs were detected on Sus scrofa chromosome (SSC) 1, SSC4 and SSC7 for NR and on SSC5, SSC16 and SSC17 for CL. Moreover, two SNPs (H3GA0022644 and WU_10.2_7_103460706) on SSC7 detected in chip-based GWAS were significantly associated with both NR and CL. Through Bayes fine mapping, one reported QTL for NR on SSC7 and two reported QTL for CL on SSC17 were verified, and two new QTL (SSC1: 14.05-15.84 Mb and SSC4: 64.83-66.59 Mb) affecting NR and two new QTL (SSC5: 58.31-59.84 Mb and SSC16: 22.98-23.43 Mb) affecting CL were detected. According to the biological functions of genes, MTHFD1L on SSC1 and SULF1 on SSC4 are novel functional candidate genes for NR, and EMP1 on SSC5 and EGFLAM on SSC16 are novel functional candidate genes for CL. Overall, our findings provide a basis for identifying new causal genes and mutations affecting NR and CL.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Suínos/genética , Estudo de Associação Genômica Ampla/veterinária , Teorema de Bayes , Genótipo , Fenótipo , Costelas , Polimorfismo de Nucleotídeo Único , Sus scrofa/genética
11.
Curr Issues Mol Biol ; 44(10): 4557-4569, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36286027

RESUMO

Dietary fiber plays an important role in porcine gut health and welfare. Fiber is degraded by microbial fermentation in the intestine, and most gut microbiota related to fiber digestibility in pigs are worth pursuing. The aim of this study was to identify gut microbiota associated with the apparent total tract digestibility (ATTD) of neutral detergent fiber (NDF) and of acid detergent fiber (ADF) in pigs. Large phenotypic variations in the ATTD of NDF and of ADF were separately found among 274 Suhuai pigs. Microbial community structures were significantly different between high and low fiber digestibility groups. Fourteen genera separately dominated the communities found in the high ATTD (H-AD) of NDF and ADF samples and were in very low abundance in the low ATTD (L-AD) of NDF and ADF samples. In conclusion, norank_f__Bacteroidales_S24-7_group (p < 0.05), Ruminococcaceae_UCG-005 (p < 0.05), unclassified_f__Lachnospiraceae (p < 0.05), Treponema_2 (p < 0.01), and Ruminococcaceae_NK4A214_group (p < 0.01) were the main genera of gut microbiota affecting the ATTD of NDF in pigs. Christensenellaceae_R-7_group (p < 0.01), Treponema_2 (p < 0.05), Ruminococcaceae_NK4A214_group (p < 0.05), Ruminococcaceae_UCG-002 (p < 0.05), and [Eubacterium]_coprostanoligenes_group (p < 0.05) were the main genera of gut microbiota affecting the ATTD of ADF in pigs. The most important functions of the above different potential biomarkers were: carbohydrate transport and metabolism, general function prediction only, amino acid transport and metabolism, cell wall/membrane/envelope biogenesis, translation, transcription, replication, energy production and conversion, signal transduction mechanisms, and inorganic ion transport and metabolism. The most important metabolic pathways of the above different potential biomarkers were: membrane transport, carbohydrate metabolism, amino acid metabolism, replication and repair, translation, cell motility, energy metabolism, poorly characterized, nucleotide metabolism, metabolism of cofactors and vitamins, and cellular processes and signaling.

12.
J Environ Sci (China) ; 111: 38-50, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34949366

RESUMO

Toxic heavy metal ions, valuable noble metal ions and organic dyes are significant concerns in wastewater treatment. In this work, MoO3 nanobelts (MoO3 NBs) prepared by solvothermal method and MoS2 nanoarrays (MoS2 NAs) constructed using MoO3 NBs precursor were proposed to effectively remove heavy/noble metal ions and organic dyes, such as Pb(II), Au(III) and Methylene Blue (MB). The two adsorbents exhibited the excellent adsorption capacity towards Pb(II), Au(III) and MB. The maximum removal capacity of Pb(II) and MB on MoO3 NBs was 684.93 mg/g and 1408 mg/g, respectively, whereas that of Au(III) and MB on MoS2 NAs was 1280.2 mg/g and 768 mg/g, respectively. Furthermore, the thermodynamic parameters were calculated from the temperature-dependent curves, suggesting that the removal of Pb(II) and Au(III) on both adsorbents was spontaneous and endothermic. The new adsorbents introduced here were high adsorption activity, ease of fabrication, high scalability, good chemical stability, great repeatability and abundant and cheap supply, which were highly attractive for wastewater treatment.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Molibdênio , Poluentes Químicos da Água/análise
13.
Heredity (Edinb) ; 126(1): 206-217, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32665691

RESUMO

Records on groups of individuals could be valuable for predicting breeding values when a trait is difficult or costly to measure on single individuals, such as feed intake and egg production. Adding genomic information has shown improvement in the accuracy of genetic evaluation of quantitative traits with individual records. Here, we investigated the value of genomic information for traits with group records. Besides, we investigated the improvement in accuracy of genetic evaluation for group-recorded traits when including information on a correlated trait with individual records. The study was based on a simulated pig population, including three scenarios of group structure and size. The results showed that both the genomic information and a correlated trait increased the accuracy of estimated breeding values (EBVs) for traits with group records. The accuracies of EBV obtained from group records with a size 24 were much lower than those with a size 12. Random assignment of animals to pens led to lower accuracy due to the weaker relationship between individuals within each group. It suggests that group records are valuable for genetic evaluation of a trait that is difficult to record on individuals, and the accuracy of genetic evaluation can be considerably increased using genomic information. Moreover, the genetic evaluation for a trait with group records can be greatly improved using a bivariate model, including correlated traits that are recorded individually. For efficient use of group records in genetic evaluation, relatively small group size and close relationships between individuals within one group are recommended.


Assuntos
Cruzamento , Genômica , Animais , Suínos
14.
Pediatr Res ; 89(7): 1724-1731, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32599608

RESUMO

BACKGROUND: Procedural pain is underestimated in hospitalized preterm infants. The aim of this study was to assess the reliability, validity, and clinical utility of the Neonatal Facial Coding System (NFCS), Douleur Aiguë du Nouveau-né (DAN) scale, Neonatal Infant Pain Scale (NIPS), and Premature Infant Pain Profile (PIPP) in premature infants undergoing heel blood collection. We assume that the four scales were similar in reliablility and validity (but different in clinical utility). METHODS: The pain assessments were performed on 111 premature infants using the four scales. Internal consistency was determined by Cronbach's α, and the reliability was determined by the intraclass correlation coefficients. Concurrent validity was evaluated by Spearman's rank correlations. Bland-Altman plots were used to investigate the convergent validity. RESULTS: The internal consistency and their reliability of the scales were high (p < 0.001). Scores were significantly higher at the time of blood collection (p < 0.001). Mean scores of clinical utility of PIPP were significantly higher than NFCS and DAN (p < 0.05) but not higher than the NIPS (p > 0.05). CONCLUSIONS: The four scales were reliable and valid. This study suggests that the PIPP and NIPS has good clinical utility and are better choice for evaluating procedural pain in premature infants. IMPACT: The aim of this study was to assess the reliability, validity, and clinical utility of NFCS, DAN, NIPS, and PIPP in premature infants undergoing heel blood collection. The results showed that the four scales have high reliability and internal consistency; the PIPP and NIPS have good clinical utility and are better choice for evaluating procedural pain in premature infants. Our study results provided a reference for clinical workers in choosing pain assessment scales and conduction intervention.


Assuntos
Calcanhar/irrigação sanguínea , Medição da Dor/métodos , Dor Processual/diagnóstico , Manejo de Espécimes/efeitos adversos , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Reprodutibilidade dos Testes
15.
J Integr Plant Biol ; 63(7): 1240-1259, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33729679

RESUMO

Pumilio RNA-binding proteins participate in messenger RNA (mRNA) degradation and translational repression, but their roles in plant development are largely unclear. Here, we show that Arabidopsis PUMILIO PROTEIN24 (APUM24), an atypical Pumilio-homology domain-containing protein, plays an important part in regulating seed maturation, a major stage of plant development. APUM24 is strongly expressed in maturing seeds. Reducing APUM24 expression resulted in abnormal seed maturation, wrinkled seeds, and lower seed oil contents, and APUM24 knockdown resulted in lower levels of WRINKLED 1 (WRI1), a key transcription factor controlling seed oil accumulation, and lower expression of WRI1 target genes. APUM24 reduces the mRNA stability of BTB/POZMATH (BPM) family genes, thus decreasing BPM protein levels. BPM is responsible for the 26S proteasome-mediated degradation of WRI1 and has important functions in plant growth and development. The 3' untranslated regions of BPM family genes contain putative Pumilio response elements (PREs), which are bound by APUM24. Reduced BPM or increased WRI1 expression rescued the deficient seed maturation of apum24-2 knockdown mutants, and APUM24 overexpression resulted in increased seed size and weight. Therefore, APUM24 is crucial to seed maturation through its action as a positive regulator fine-tuning the BPM-WRI1 module, making APUM24 a promising target for breeding strategies to increase crop yields.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Melhoramento Vegetal/métodos , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant Physiol ; 179(4): 1669-1691, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674698

RESUMO

The nucleo-mitochondrial dual-localized proteins can act as gene expression regulators; however, few instances of these proteins have been described in plants. Arabidopsis (Arabidopsis thaliana) PROHIBITIN 3 (PHB3) is involved in stress responses and developmental processes, but it is unknown how these roles are achieved at the molecular level in the nucleus. In this study, we show that nucleo-mitochondrial PHB3 plays an essential role in regulating genome stability and cell proliferation. PHB3 is up-regulated by DNA damage agents, and the stress-induced PHB3 proteins accumulate in the nucleus. Loss of function of PHB3 results in DNA damage and defective maintenance of the root stem cell niche. Subsequently, the expression patterns and levels of the root stem cell regulators are altered and down-regulated, respectively. In addition, the phb3 mutant shows aberrant cell division and altered expression of cell cycle-related genes, such as CycB1 and Cyclin dependent kinase 1 Moreover, the minichromosome maintenance (MCM) genes, e.g. MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7, are up-regulated in the phb3 mutant. Reducing the MCM2 expression level substantially recovers the DNA damage in the phb3 mutant and partially rescues the altered cell proliferation and root deficiency of phb3 seedlings. PHB3 acts as a transcriptional coregulator that represses MCM2 expression by competitively binding to the promoter E2F-cis-acting elements with E2Fa so as to modulate primary root growth. Collectively, these findings indicate that nuclear-localized PHB3 acts as a transcriptional coregulator that suppresses MCM2 expression to sustain genome integrity and cell proliferation for stem cell niche maintenance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Instabilidade Genômica , Meristema/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/fisiologia , Proteínas de Manutenção de Minicromossomo/fisiologia , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Proliferação de Células/genética , Dano ao DNA , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Meristema/crescimento & desenvolvimento , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proibitinas , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia
17.
J Proteome Res ; 18(3): 1114-1124, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576150

RESUMO

N-Glycans are an important source of milk oligosaccharides. In addition to free oligosaccharides found in milk, N-glycans can also be utilized by gut microbes. A potential for milk N-glycans to act as gut microbe regulators in suckling animals has attracted considerable attention; however, sow milk N-glycans and their potential effects upon the piglet's gut microbes in vivo remain unknown. In the present study, we profiled the milk N-glycans of Meishan and Yorkshire sows during lactation using UPLC and a mass spectrometry-based glycome method, and we explored the correlations between milk N-glycans and offspring gut microbiota. Twenty-two N-glycan structures were identified in sow milk, among which 36% (8 out of 22) were fucosylated, 41% (9 out of 22) were sialylated, and 14% (3 out of 22) were high mannosylated. An N-glycan with a NeuGc structure (namely PNO20, GlcNAc4-Man3-Gal2-Fuc-Neu5Gc) was identified in sow milk for the first time. No compositional differences between the two breeds or between different lactation times were found in porcine milk N-linked oligosaccharides (PNOs); however, the abundances of different structures within this class did vary. The relative abundances of fucosylated PNO3 (GlcNAc4-Man3-Fuc) and sialylated PNO18 (GlcNAc4-Man3-Gal2-NeuAc) increased during lactation, and Meishan sows demonstrated a higher ( P < 0.05) abundance of mannosylated PNO10 (GlcNAc2-Man6) and sialylated PNO17 (GlcNAc5-Man3-Gal-NeuAc) than Yorkshire sows. Apparent correlations between milk N-glycans and offspring gut microbial populations were found; for example, mannosylated PNO21 (GlcNAc2-Man9) was positively correlated with OTU706 ( Lactobacillus amylovorus) and OTU1380 ( Bacteroides uniformis). Overall, our results indicate that the milk N-glycome of Meishan and Yorkshire sows differs in N-glycome characteristics and that this is correlated to abundances of certain piglet gut microbes. These findings provide a reference for future elucidation of the involvement of gut microbes in milk N-glycan metabolism, which is important to the health both of large domestic animals and humans.


Assuntos
Microbioma Gastrointestinal/genética , Glicosilação , Leite/química , Polissacarídeos/genética , Animais , Feminino , Humanos , Lactação/genética , Espectrometria de Massas , Leite/metabolismo , Leite/microbiologia , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Gravidez , Suínos
18.
Int J Mol Sci ; 20(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781601

RESUMO

The gut microbiota plays important roles in animal health and nutrient digestibility. The characteristics of gut microbiota population in grower pigs and their correlation with apparent nutrient digestibility were assessed in previous study. Here we studied characteristics of intestinal microbiota of sows and analyzed their relationships with apparent nutrient (ether extract (EE), crude protein (CP), crude fiber (CF), neutral detergent fiber (NDF) and acid detergent fiber (ADF)) digestibility. Firmicutes and Bacteroidetes were the most dominant phyla, approximately 73% of the total sequences. Treponema, Oscillibacter and Lactobacillus were the most dominant generas, more than 49% of the total sequences. The microbiota of sows clustered separately from the microbiota of grower pigs at the age of D28 D60, D90 and D150. The abundance of Clostridium and Turicibacter was positively correlated with apparent EE digestibility. The abundance of Anaerofustis and Robinsoniella in sow fecal samples was positively correlated with apparent CF digestibility. The abundance of Collinsella and Sutterella was positively correlated with apparent NDF digestibility. The abundance of Clostridium, Collinsella, Robinsoniella and Turicibacter was positively correlated with apparent ADF digestibility. Sows have their unique gut microbial structure compared with grower pigs and some of them participate in the digestive process of different nutrients.


Assuntos
Digestão , Microbioma Gastrointestinal , Nutrientes/metabolismo , Suínos/microbiologia , Animais , Bactérias/genética , Sequência de Bases , Fezes/microbiologia , Feminino , Filogenia , Análise de Componente Principal
19.
Plant Physiol ; 173(4): 2294-2307, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28250067

RESUMO

Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis (Arabidopsis thaliana) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACIDINDUCTION DEFICIENT2 (SID2), NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2, NDR1, or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40, WRKY46, WRKY51, WRKY60, WRKY63, and WRKY75; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Metaloproteases/metabolismo , Proteínas Mitocondriais/metabolismo , Folhas de Planta/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Família da Proteína 8 Relacionada à Autofagia , Morte Celular/genética , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Metaloproteases/genética , Microscopia Confocal , Proteínas Mitocondriais/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição/genética
20.
Yi Chuan ; 39(11): 1016-1024, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29254919

RESUMO

The Erhualian pig, originally distributed in the Taihu area, is well known for its universally high fertility. Previous studies have found that high ovulation numbers, low embryo mortality and high uterine volumes are important physiological characteristics underlying the high prolificacy of the Erhualian pig. Although candidate genes such as follicle-stimulating hormone ß (FSHß) and several quantitative trait loci (QTLs) on chromosome 2, 6, 7, 8, 12, 13 and 15 have been reported to affect the litter size in the Erhualian pig, the key genes related to high prolificacy remain poorly understood. In this review, we summarize the recent research progress in the physiological and genetic mechanisms underlying the high prolificacy of the Erhualian pig. First we review the role of high ovulation numbers, low embryo mortality rates and high uterine volumes in the formation of the high litter size in the Erhualian pig. Then we summarize candidate genes and QTLs for the high litter size detected by classical strategies, as well as by genomic strategies. Moreover, we describe the methods to investigate the causative genes of the high prolificacy through integrative analysis of multi-omics data including genomics, transcriptomics, proteomics and functional genomics. This review will provide insights to understand the molecular basis of the high prolificacy in the Erhualian pig.


Assuntos
Fertilidade/genética , Suínos/genética , Animais , Fertilidade/fisiologia , Subunidade beta do Hormônio Folículoestimulante/genética , Ovulação , Locos de Características Quantitativas , Suínos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA