Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(10): 3976-3982, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35561341

RESUMO

Solid-state materials are currently being explored as a platform for the manipulation of spins for spintronics and quantum information science. More broadly, a wide spectrum of ferroelectric materials, spanning from inorganic oxides to polymeric systems such as PVDF, present a different approach to explore quantum phenomena in which the spins are set and manipulated with electric fields. Using dilute Fe3+-doped ferroelectric PbTiO3-SrTiO3 superlattices as a model system, we demonstrate intrinsic spin-polarization control of spin directionality in complex ferroelectric vortices and skyrmions. Electron paramagnetic resonance (EPR) spectra show that the spins in the Fe3+ ion are strongly coupled to the local polarization and preferentially aligned perpendicular to the ferroelectric polar c axis in this complex vortex structure. The effect of polarization-spin directionality is corroborated by first-principles calculations, demonstrating the variation of the spin directionality with the polar texture and offering the potential for future quantum analogues of macroscopic magnetoelectric devices.

2.
Phys Rev Lett ; 120(8): 086602, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29543023

RESUMO

Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1/N^{0.5} has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1/N^{0.52} in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.

3.
Sci Adv ; 7(10)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33658210

RESUMO

Magnetoelectrics, materials that exhibit coupling between magnetic and electric degrees of freedom, not only offer a rich environment for studying the fundamental materials physics of spin-charge coupling but also present opportunities for future information technology paradigms. We present results of electric field manipulation of spins in a ferroelectric medium using dilute ferric ion-doped lead titanate as a model system. Combining first-principles calculations and electron paramagnetic resonance (EPR), we show that the ferric ion spins are preferentially aligned perpendicular to the ferroelectric polar axis, which we can manipulate using an electric field. We also demonstrate coherent control of the phase of spin superpositions by applying electric field pulses during time-resolved EPR measurements. Our results suggest a new pathway toward the manipulation of spins for quantum and classical spintronics.

4.
Nat Commun ; 11(1): 1439, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188861

RESUMO

Next-generation non-volatile memories with ultrafast speed, low power consumption, and high density are highly desired in the era of big data. Here, we report a high performance memristor based on a Ag/BaTiO3/Nb:SrTiO3 ferroelectric tunnel junction (FTJ) with the fastest operation speed (600 ps) and the highest number of states (32 states or 5 bits) per cell among the reported FTJs. The sub-nanosecond resistive switching maintains up to 358 K, and the write current density is as low as 4 × 103 A cm-2. The functionality of spike-timing-dependent plasticity served as a solid synaptic device is also obtained with ultrafast operation. Furthermore, it is demonstrated that a Nb:SrTiO3 electrode with a higher carrier concentration and a metal electrode with lower work function tend to improve the operation speed. These results may throw light on the way for overcoming the storage performance gap between different levels of the memory hierarchy and developing ultrafast neuromorphic computing systems.

5.
ACS Appl Mater Interfaces ; 10(25): 21390-21397, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29873228

RESUMO

Electric-field control of magnetism is a key issue for the future development of low-power spintronic devices. By utilizing the opposite strain responses of the magnetic anisotropies in Co and Ni films, a Co/Cu/Ni/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) spin-valve/piezoelectric heterostructure with ∼7 nm Cu spacer layer was properly designed and fabricated. The purely electric-field-controlled nonvolatile and reversible magnetization rotations in the Co free layer were achieved, whereas the magnetization of the Ni fixed layer was almost unchanged. Accordingly, not only the electroresistance but also the electric-field-tuned magnetoresistance effects were obtained, and more importantly at least six nonvolatile magnetoresistance states in the strain-tuned spin valve were achieved by setting the PMN-PT into different nonvolatile piezo-strain states. These findings highlight potential strategies for designing electric-field-driven multistate spintronic devices.

6.
ACS Appl Mater Interfaces ; 10(6): 5649-5656, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29368507

RESUMO

Brain-inspired computing architectures attempt to emulate the computations performed in the neurons and the synapses in the human brain. Memristors with continuously tunable resistances are ideal building blocks for artificial synapses. Through investigating the memristor behaviors in a La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic tunnel junction, it was found that the ferroelectric domain dynamics characteristics are influenced by the relative magnetization alignment of the electrodes, and the interfacial spin polarization is manipulated continuously by ferroelectric domain reversal, enriching our understanding of the magnetoelectric coupling fundamentally. This creates a functionality that not only the resistance of the memristor but also the synaptic plasticity form can be further manipulated, as demonstrated by the spike-timing-dependent plasticity investigations. Density functional theory calculations are carried out to describe the obtained magnetoelectric coupling, which is probably related to the Mn-Ti intermixing at the interfaces. The multiple and controllable plasticity characteristic in a single artificial synapse, to resemble the synaptic morphological alteration property in a biological synapse, will be conducive to the development of artificial intelligence.


Assuntos
Sinapses , Magnetismo , Plasticidade Neuronal , Neurônios , Titânio
7.
ACS Appl Mater Interfaces ; 10(36): 30614-30622, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30125490

RESUMO

The ferroelectric control of spin-polarization at ferromagnet (FM)/ferroelectric organic (FE-Org) interface by electrically switching the ferroelectric polarization of the FE-Org has been recently realized in the organic multiferroic tunnel junctions (OMFTJs) and gained intensive interests for future multifunctional organic spintronic applications. Here, we report the evidence of ferroelectric "ailing-channel" in the organic barrier, which can effectively pin the ferroelectric domain, resulting in nonswitchable spin polarization at the FM/FE-Org interface. In particular, OMFTJs based on La0.6Sr0.4MnO3/P(VDF-TrFE) ( t)/Co/Au structures with different P(VDF-TrFE) thickness ( t) were fabricated. The combined advanced electron microscopy and spectroscopy studies clearly reveal that very limited Co diffusion exists in the P(VDF-TrFE) organic barrier when the Au/Co electrode is deposited around 80K. Pot-hole structures at the boundary between the P(VDF-TrFE) needle-like grains are evidenced to induce "ailing-channels" that hinder efficient ferroelectric polarization of the organic barrier and result in the quenching of the spin polarization switching at Co/P(VDF-TrFE) interface. Furthermore, the spin diffusion length in the negatively polarized P(VDF-TrFE) is measured to be about 7.2 nm at 20K. The evidence of the mechanism of ferroelectric "ailing-channels" is of essential importance to improve the performance of OMFTJ and master the key condition for an efficient ferroelectric control of the spin polarization of "spinterface".

8.
ACS Appl Mater Interfaces ; 9(24): 20484-20490, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28558183

RESUMO

Solid-state dielectric film capacitors with high-energy-storage density will further promote advanced electronic devices and electrical power systems toward miniaturization, lightweight, and integration. In this study, the influence of interface and thickness on energy storage properties of SrTiO3 (STO) films grown on La0.67Sr0.33MnO3 (LSMO) electrode are systematically studied. The cross-sectional high resolution transmission electron microscopy reveals an ion interdiffusion layer and oxygen vacancies at the STO/LSMO interface. The capacitors show good frequency stability and increased dielectric constant with increasing STO thickness (410-710 nm). The breakdown strength (Eb) increases with decreasing STO thickness and reaches 6.8 MV/cm. Interestingly, the Eb under positive field is enhanced significantly and an ultrahigh energy density up to 307 J/cm3 with a high efficiency of 89% is realized. The enhanced Eb may be related to the modulation of local electric field and redistribution of oxygen vacancies at the STO/LSMO interface. Our results should be helpful for potential strategies to design devices with ultrahigh energy density.

9.
ACS Appl Mater Interfaces ; 8(16): 10422-9, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27055530

RESUMO

A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents at least four resistance states in a single memory cell and therefore opens an avenue for the development of the next generation of high-density nonvolatile memory devices. Here, using the all-perovskite-oxide La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 as a model MFTJ system, we demonstrate asymmetrical Mn-Ti sublattice intermixing at the La0.7Sr0.3MnO3/BaTiO3 interfaces by direct local measurements of the structure and valence, which reveals the relationship between ferroelectric polarization directions and four-resistance states, and the low temperature anomalous tunneling behavior in the MFTJ. These findings emphasize the crucial role of the interfaces in MFTJs and are quite important for understanding the electric transport of MFTJs as well as designing high-density multistates storage devices.

10.
Adv Mater ; 28(46): 10204-10210, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27709711

RESUMO

Organic multiferroic tunnel junctions based on La0.6 Sr0.4 MnO3 /poly(vinylidene fluoride) (PVDF)/Co structures are fabricated. The tunneling magneto-resistance sign can be changed by electrically switching the ferroelectric polarization of PVDF barrier. It is demonstrated that the spin-polarization of the PVDF/Co spinterface can be actively controlled by tuning the ferroelectric polarization of PVDF. This study opens new functionality in controlling the injection of spin polarization into organic materials via the ferroelectric polarization of the barrier.

11.
ACS Appl Mater Interfaces ; 7(47): 26036-42, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26554671

RESUMO

The electric field effects on the electric and magnetic properties in multiferroic heterostructures are important for not only understanding the mechanisms of certain novel physical phenomena occurring at heterointerfaces but also offering a route for promising spintronic applications. Using the Au/BiFeO3/La0.6Sr0.4MnO3 (Au/BFO/LSMO) multiferroic heterostructure as a model system, we investigated the ferroelectric-resistive switching (RS) behaviors of the heterostructure. Via the manipulation of the BFO ferroelectric polarizations, the nonvolatile tristate of RS is observed, which is closely related to the Au/BFO and BFO/LSMO interface layers and the highly conducting BFO domain walls (DWs). More interestingly, according to the magnetic field dependence of the RS behavior, the negative magnetoresistance effect of the third resistance state, corresponding to the abnormal current peak in current-pulse voltage hysteresis near the electric coercive field, is also observed at room temperature, which mainly arises from the possible oxygen vacancy accumulation and Fe ion valence variation in the DWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA