RESUMO
The rapid capacity degradation and poor rate capability hinder the application of Rich-Ni layered LiNix Coy Mnz O2 (NCM) as cathode materials for high-energy lithium-ion batteries. In this study, density functional theory (DFT) calculations, combined with conventional electrochemical measurements, reveal from the atomic view that the dual improvements in electronic and ionic conductivities are the main facts for the property enhancement. The bandgap of the cathode material is reduced to 1.1623 eV due to the increased number of electrons near the Fermi level after W intercalation. Such improved electronic conductivity subsequently leads to a suppressed polarization and reduced resistance, enabling an improved cycle life of up to 93.97% after 100 cycles at 0.5 C. Furthermore, the doping with W6+ also introduced a strong WO bond into the layered structure so that the thickness of the Li slab is expanded to 2.6476 Å, which reduces the energy barrier from 0.355 to 0.308 eV for the migration of Li+ within the Li slab, as confirmed by the DFT calculation. Consequently, the rate performance is greatly improved due to the reduced diffusion energy, with a specific capacity of 159.11 mAg-1 even at 5 C rate, indicating high potential for future applications.
RESUMO
Free-space optical (FSO) communication has attracted extensive attention in recent years. To maintain a reliable FSO link, two main issues need to be addressed: beam drift and vibration. In this paper, we demonstrate a non-mechanical self-alignment system based on a cascaded liquid crystal optical antenna, in which a frequency decoupled hybrid integration Kalman filter (FDHI-KF) method is proposed to achieve predictive beam drift tracking and vibration mitigation. By leveraging the integrated control on our lab-made liquid crystal phase modulation devices, and implementing the adaptive algorithm on a heterogeneous field programmable gate array (FPGA), this system is capable of realizing precise self-alignment without any moving parts. Experiments are conducted to verify its performance in practical applications. We envision it to set a benchmark for future liquid crystal non-mechanical beam-steering systems in FSO communications.
RESUMO
Natural killer (NK) cells are cytotoxic lymphocytes that are critical for the innate immune system. Engineering NK cells with chimeric antigen receptors (CARs) allows CAR-NK cells to target tumor antigens more effectively. In this report, we present novel CAR mRNA-LNP (lipid nanoparticle) technology to effectively transfect NK cells expanded from primary PBMCs and to generate functional CAR-NK cells. CD19-CAR mRNA and BCMA-CAR mRNA were embedded into LNPs that resulted in 78% and 95% CAR expression in NK cells, respectively. BCMA-CAR-NK cells after transfection with CAR mRNA-LNPs killed multiple myeloma RPMI8226 and MM1S cells and secreted IFN-gamma and Granzyme B in a dose-dependent manner in vitro. In addition, CD19-CAR-NK cells generated with CAR mRNA-LNPs killed Daudi and Nalm-6 cells and secreted IFN-gamma and Granzyme B in a dose-dependent manner. Both BCMA-CAR-NK and CD19-CAR-NK cells showed significantly higher cytotoxicity, IFN-gamma, and Granzyme B secretion compared with normal NK cells. Moreover, CD19-CAR-NK cells significantly blocked Nalm-6 tumor growth in vivo. Thus, non-viral delivery of CAR mRNA-LNPs can be used to generate functional CAR-NK cells with high anti-tumor activity.
Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Granzimas/genética , Antígeno de Maturação de Linfócitos B , Células Matadoras Naturais , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19RESUMO
Optical phased arrays (OPAs) can achieve non-mechanical beam deflection. Many types of OPA face the problem of low deflection efficiency due to the phase distortion induced by mutual coupling between nearby channels. In this Letter, a universal optimization algorithm is proposed to compensate for this structural phase distortion, in which the adjacent sampling principal component analysis (AS-PCA) method is introduced to reduce the dimension of the solution space. Simulations and experimental results on different classes of OPA verified that this method can considerably optimize the deflection beam with a rapid convergence speed, irrespective of the scale of OPA, and maintain the universal feature, laying the foundation for large-scale, high-density OPA in-line optimization. We envision it to become a general method on different platforms.
RESUMO
To implement a liquid crystal optical phased array (LC-OPA) on a practical free-space laser communication terminal, there are two essential parameters: insertion loss and the closed-loop bandwidth required to meet the dynamic linking condition of the acquisition-tracking-pointing sub-system. Real-time hardware platforms and deflection efficiency optimization algorithms have been suggested since the invention of LC-OPA. In this paper, the so-called ZYNQ platform, a field-programmable-gate-array-based heterogeneous system-on-chip (SoC), is utilized to keep real-time response and accelerate data generation, such as beam steering, beamforming, beam enhancement, etc. In addition, a novel, to the best of our knowledge, optimization algorithm is proposed on the concept of dimension reduction of the number of objective variables. After deploying on this heterogeneous SoC platform, numerical simulations and experimental results both verify that, compared to the conventional PC-based system, the integrated SoC platform offers 15.8 times faster iterative speed, a rapid convergence rate, and excellent robustness, yet with less usage of power, physical size, and monetary cost. The efficiency enhancement process costs only a few seconds at any angle, laying the foundation for practical in-line applications.
RESUMO
Since the conventional split-merge algorithm is sensitive to the object scale variance and splitting starting point, a piecewise split-merge polygon-approximation method is proposed to extract the object contour features. Specifically, the contour corner is used as the starting point for the contour piecewise approximation to reduce the sensitivity of the contour segment for the starting point; then, the split-merge algorithm is used to implement the polygon approximation for each contour segment. Both the distance ratio and the arc length ratio instead of the distance error are used as the iterative stop condition to improve the robustness to the object scale variance. Both the angle and length as two features describe the shape of the contour polygon; they have a strong coupling relationship since they affect each other along the contour order relationship. To improve the description correction of the contour, these two features are combined to construct a Coupled Hidden Markov Model to detect the object by calculating the probability of the contour feature. The proposed algorithm is validated on ETHZ Shape Classes and INRIA Horses standard datasets. Compared with other contour-based object-detection algorithms, the proposed algorithm reduces the feature number and improves the object-detection rate.
Assuntos
Algoritmos , Percepção de Forma , Animais , Cavalos , ProbabilidadeRESUMO
In the actual industrial production process, the method of adaptively tuning proportional-integral-derivative (PID) parameters online by neural network can adapt to different characteristics of different controlled objects better than the controller with PID. However, the commonly used microcontroller unit (MCU) cannot meet the application scenarios of real time and high reliability. Therefore, in this paper, a closed-loop motion control system based on BP neural network (BPNN) PID controller by using a Xilinx field programmable gate array (FPGA) solution is proposed. In the design of the controller, it is divided into several sub-modules according to the modular design idea. The forward propagation module is used to complete the forward propagation operation from the input layer to the output layer. The PID module implements the mapping of PID arithmetic to register transfer level (RTL) and is responsible for completing the output of control amount. The main state machine module generates enable signals that control the sequential execution of each sub-module. The error backpropagation and weight update module completes the update of the weights of each layer of the network. The peripheral modules of the control system are divided into two main parts. The speed measurement module completes the acquisition of the output pulse signal of the encoder and the measurement of the motor speed. The pulse width modulation (PWM) signal generation module generates PWM waves with different duty cycles to control the rotation speed of the motor. A co-simulation of Modelsim and Simulink is used to simulate and verify the system, and a test analysis is also performed on the development platform. The results show that the proposed system can realize the self-tuning of PID control parameters, and also has the characteristics of reliable performance, high real-time performance, and strong anti-interference. Compared with MCU, the convergence speed is far more than three orders of magnitude, which proves its superiority.
RESUMO
As part of an Internet of Things (IoT) framework, the Smart Grid (SG) relies on advanced communication technologies for efficient energy management and utilization. Cognitive Radio (CR), which allows Secondary Users (SUs) to opportunistically access and use the spectrum bands owned by Primary Users (PUs), is regarded as the key technology of the next-generation wireless communication. With the assistance of CR technology, the quality of communication in the SG could be improved. In this paper, based on a hybrid CR-enabled SG communication network, a new system architecture for multiband-CR-enabled SG communication is proposed. Then, some optimization mathematical models are also proposed to jointly find the optimal sensing time and the optimal power allocation strategy. By using convex optimization techniques, several optimal methods are proposed to maximize the data rate of multiband-CR-enabled SG while considering the minimum detection probabilities to the active PUs. Finally, simulations are presented to show the validity of the proposed methods.
RESUMO
Anti-lipopolysaccharide factors are effective antimicrobial peptides that can bind and neutralize lipopolysaccharide (LPS). In the present study, a new sequence encoding for ALF (designated as PtALF8) was cloned by suppression subtractive hybridization method using ovary of swimming crab Portunus trituberculatus as material. The full-length cDNA of PtALF8 consisted of 531 bp with an ORF of 348 bp encoding a peptide of 115 amino acids containing a putative signal peptide of 19 amino acids. The mature PtALF8 had a predicted molecular weight (MW) of 11.28â¯kDa and theoretical isoelectricpoint (pI) of 5.11. The PtALF8 contains an MBT domain which was not found in the other 7 isoforms of ALF reported in P. trituberculatus. Unlike most ALFs expressed in hemocytes, PtALF8 transcript was predominantly detected in hepatopancreas. After challenge with Vibrio alginolyticus, the temporal expression level of PtALF8 transcript in hemocytes reached the highest level at 3â¯h, then decreased to the lowest level at 24â¯h, and started to increase at 48â¯h. The recombinant protein showed antimicrobial and bactericidal activity against several bacteria, such as Gram-positive bacteria, Staphylococcus aureus, Micrococcus luteus and Gram-negative bacteria, V. alginolyticus, indicated that the PtALF8 isoform might play protective function against invading bacteria in P. trituberculatus.
Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Feminino , Perfilação da Expressão Gênica , Micrococcus luteus/fisiologia , Filogenia , Alinhamento de Sequência , Staphylococcus aureus/fisiologia , Vibrio alginolyticus/fisiologiaRESUMO
R-lipoic acid (ALA), a powerful antioxidant valuable for the treatment of diabetes and its complications, has been reported to exhibit an antiplatelet activity in vitro. The aim of this study was to investigate the effect and mechanism of ALA on platelets in vivo. Sprague-Dawley (SD) male rats were intravenously administered with low-dose ALA (20 mg/kg/d), high-dose ALA (80 mg/kg/d) and saline, respectively. Platelets count and bone marrow smear were evaluated and the expressions of markers related to apoptosis and autophagy were measured. Platelet clearance analysis was conducted out on mice. The results showed that high-dose ALA administration could significantly decrease platelet count by 43% compared with control group, whereas, megakaryocytes showed no difference in the number. Moreover, high-dose ALA administration led to significant reduction in half-life of circulating platelets, indicative of enhanced rate of platelet clearance. Interesting, high-dose ALA administration could increase the level of reactive oxygen species (ROS) in platelets and induce autophagy without affecting apoptosis. Our finding also showed that high ALA-induced autophagy in platelets was mediated by class III PtdIns3K activity, which could be reversed by 3-methyladenine (3-MA). Moreover, AKT and MAPK/ERK pathways were also observed to be involved in the regulation of autophagy in platelets. Thus, high-dose ALA could induce autophagy in platelets through modulating the activity of class III PtdIns3K, which was associated with decreased count of circulating platelets and shortened lifespan of platelets.
Assuntos
Autofagia/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Tióctico/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Medula Óssea/patologia , Citometria de Fluxo/métodos , Humanos , Masculino , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Contagem de Plaquetas , Testes de Função Plaquetária , RatosRESUMO
The human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor and tumor-associated antigen abnormally expressed in various types of cancer, including breast, ovarian, and gastric cancer. HER2 overexpression is highly correlated with increased tumor aggressiveness, poorer prognosis, and shorter overall survival. Consequently, multiple HER2-targeted therapies have been developed and approved; however, only a subset of patients benefit from these treatments, and relapses are common. More potent and durable HER2-targeted therapies are desperately needed for patients with HER2-positive cancers. In this study, we developed a lipid nanoparticle (LNP)-based therapy formulated with mRNA encoding a novel HER2-CD3-Fc bispecific antibody (bsAb) for HER2-positive cancers. The LNPs efficiently transfected various types of cells, such as HEK293S, SKOV-3, and A1847, leading to robust and sustained secretion of the HER2-CD3-Fc bsAb with high binding affinity to both HER2 and CD3. The bsAb induced potent T-cell-directed cytotoxicity, along with secretion of IFN-λ, TNF-α, and granzyme B, against various types of HER2-positive tumor cells in vitro, including A549, NCI-H460, SKOV-3, A1847, SKBR3, and MDA-MB-231. The bsAb-mediated antitumor effect is highly specific and strictly dependent on its binding to HER2, as evidenced by the gained resistance of A549 and A1847 her2 knockout cells and the acquired sensitivity of mouse 4T1 cells overexpressing the human HER2 extracellular domain (ECD) or epitope-containing subdomain IV to the bsAb-induced T cell cytotoxicity. The bsAb also relies on its binding to CD3 for T-cell recruitment, as ablation of CD3 binding abolished the bsAb's ability to elicit antitumor activity. Importantly, intratumoral injection of the HER2-CD3-Fc mRNA-LNPs triggers a strong antitumor response and completely blocks HER2-positive tumor growth in a mouse xenograft model of human ovarian cancer. These results indicate that the novel HER2-CD3-Fc mRNA-LNP-based therapy has the potential to effectively treat HER2-positive cancer.
RESUMO
Clonorchiasis, caused by Clonorchis sinensis infection, is a zoonotic parasitic disease of hepatobiliary system in which the proteins released by adult are major pathogenetic factors. In this study, we first characterized a putative sphingomyelin phosphodiesterase (CsSMPase) A-like secretory protein, which was highly expressed in the adult worm. The full-length gene was cloned. The putative protein is of relatively low homology comparing with SMPase from other species, and of rich T cell and B cell epitopes, suggesting that it is an antigen of strong antigenicity. The complete coding sequence of the gene was expressed in the Escherichia coli. The recombinant CsSMPase (rCsSMPase) can be recognized by C. sinensis-infected serum, and the protein immunoserum can recognize a specific band in excretory/secretory products (ESPs) of C. sinensis adult by western blotting. Immunolocalization revealed that CsSMPase was not only localized on tegument, ventral sucker of metacercaria, and the intestine of adult but also on the nearby epithelium of bile duct of the infected Sprague-Dawley rats, implying that CsSMPase was mainly secreted and excreted through adult intestine and directly interacted with bile duct epithelium. Although immunized rats evoked high level antibody response, the antigen level was low in clonorchiasis patients. And the sensitivity and specificity of rCsSMPase were 50.0 % (12/24) and 88.4 % (61/69), in sera IgG-ELISA, respectively. It is likely due to the fact that CsSMPase binding to the plasma membrane of biliary epithelium decreases the antigen immune stimulation.
Assuntos
Antígenos de Helmintos/biossíntese , Clonorchis sinensis/enzimologia , Proteínas de Helminto/biossíntese , Esfingomielina Fosfodiesterase/biossíntese , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/sangue , Sequência de Bases , Ductos Biliares/química , Ductos Biliares/parasitologia , Western Blotting , Clonagem Molecular , Clonorchis sinensis/química , Clonorchis sinensis/genética , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/química , Epitopos de Linfócito B , Epitopos de Linfócito T , Escherichia coli/genética , Perfilação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley , Homologia de Sequência de AminoácidosRESUMO
AIM: To investigate the prevalence of SUI and explore the factors that could influence the severity of SUI in adult females. DESIGN: A cross-sectional study. METHODS: A total of 1178 subjects were assessed using a risk-factor questionnaires and International Consultation on Incontinence Questionnaire Short Form (ICIQ-SF) and then divided into no SUI group, mild SUI group and moderate-to-severe SUI group according to the ICIQ-SF score. Univariate analysis between adjacent groups and ordered logistic regression models in three groups were then performed to analysis the possible associated factor with the progressive of SUI. RESULTS: The prevalence of SUI among adult women was 22.2% of them; 16.2% and 6% had mild SUI and moderate-to-severe SUI, respectively. Moreover, logistic analysis revealed that age, BMI, smoking, position preference for urination, urinary tract infections, urinary leaks during pregnancy, gynaecological inflammation and poor sleep quality were independent risk for the severity of SUI. CONCLUSION: SUI symptoms were mostly mild among Chinese females, specific risk factors such as unhealthy living habits and urination behaviours increased the risk of SUI and the aggravation of symptoms. Therefore, targeted interventions should be formulated for women to delay disease progression.
Assuntos
Incontinência Urinária por Estresse , Adulto , Feminino , Humanos , Gravidez , Estudos Transversais , População do Leste Asiático , Prevalência , Fatores de Risco , Incontinência Urinária por Estresse/epidemiologia , Incontinência Urinária por Estresse/etiologiaRESUMO
Atomically thin two-dimensional (2D) bismuth oxychalcogenides have been considered as promising candidates for high-speed and low-power photoelectronic devices due to their high charge carrier mobility and excellent environmental stability. However, the photoelectric performance of their bulk materials still falls short of expectations. Herein, a novel Bi9O7.5S6/SnS composite film with a type-II heterojunction was successfully prepared by combining hydrothermal and knife-coating techniques. The crystal structure, morphology, and optical properties were systematically investigated. Under 1 V bias voltage, the photocurrent of the Bi9O7.5S6/SnS composite film can be obtained as 107 µA cm-2, which is about 29.9 times and 93.9 times higher than that of bare Bi9O7.5S6 and SnS, respectively. The type-II heterojunction has played a significant role in improving the photoelectric performance of the Bi9O7.5S6/SnS composite film by facilitating the separation and transfer of photo-generated carriers. This work sheds light on the design and development of new bismuth-based composite materials for advanced photoelectric and photocatalytic applications.
RESUMO
Tables are a ubiquitous data format for insight communication. However, transforming data into consumable tabular views remains a challenging and time-consuming task. To lower the barrier of such a task, research efforts have been devoted to developing interactive approaches for data transformation, but many approaches still presume that their users have considerable knowledge of various data transformation concepts and functions. In this study, we leverage natural language (NL) as the primary interaction modality to improve the accessibility of average users to performing complex data transformation and facilitate intuitive table generation and editing. Designing an NL-driven data transformation approach introduces two challenges: a) NL-driven synthesis of interpretable pipelines and b) incremental refinement of synthesized tables. To address these challenges, we present NL2Rigel, an interactive tool that assists users in synthesizing and improving tables from semi-structured text with NL instructions. Based on a large language model and prompting techniques, NL2Rigel can interpret the given NL instructions into a table synthesis pipeline corresponding to Rigel specifications, a declarative language for tabular data transformation. An intuitive interface is designed to visualize the synthesis pipeline and the generated tables, helping users understand the transformation process and refine the results efficiently with targeted NL instructions. The comprehensiveness of NL2Rigel is demonstrated with an example gallery, and we further confirmed NL2Rigel's usability with a comparative user study by showing that the task completion time with NL2Rigel is significantly shorter than that with the original version of Rigel with comparable completion rates.
RESUMO
We present Rigel, an interactive system for rapid transformation of tabular data. Rigel implements a new declarative mapping approach that formulates the data transformation procedure as direct mappings from data to the row, column, and cell channels of the target table. To construct such mappings, Rigel allows users to directly drag data attributes from input data to these three channels and indirectly drag or type data values in a spreadsheet, and possible mappings that do not contradict these interactions are recommended to achieve efficient and straightforward data transformation. The recommended mappings are generated by enumerating and composing data variables based on the row, column, and cell channels, thereby revealing the possibility of alternative tabular forms and facilitating open-ended exploration in many data transformation scenarios, such as designing tables for presentation. In contrast to existing systems that transform data by composing operations (like transposing and pivoting), Rigel requires less prior knowledge on these operations, and constructing tables from the channels is more efficient and results in less ambiguity than generating operation sequences as done by the traditional by-example approaches. User study results demonstrated that Rigel is significantly less demanding in terms of time and interactions and suits more scenarios compared to the state-of-the-art by-example approach. A gallery of diverse transformation cases is also presented to show the potential of Rigel's expressiveness.
RESUMO
The epithelial cell adhesion molecule (EpCAM) is often overexpressed in many types of tumors, including colorectal cancer. We sequenced and humanized an EpCAM mouse antibody and used it to develop bispecific EpCAM-CD3 antibodies. Three different designs were used to generate bispecific antibodies such as EpCAM-CD3 CrossMab knob-in-hole, EpCAM ScFv-CD3 ScFv (BITE), and EpCAM ScFv-CD3 ScFv-human Fc designs. These antibody designs showed strong and specific binding to the EpCAM-positive Lovo cell line and T cells, specifically killed EpCAM-positive Lovo cells and not EpCAM-negative Colo741 cells in the presence of T cells, and increased T cells' IFN-gamma secretion in a dose-dependent manner. In addition, transfection of HEK-293 cells with EpCAM ScFv-CD3 ScFv human Fc mRNA-LNPs resulted in antibody secretion that killed Lovo cells and did not kill EpCAM-negative Colo741 cells. The antibody increased IFN-gamma secretion against Lovo target cells and did not increase it against Colo741 target cells. EpCAM-CD3 hFc mRNA-LNP transfection of several cancer cell lines (A1847, C30, OVCAR-5) also demonstrated functional bispecific antibody secretion. In addition, intratumoral delivery of the EpCAM-CD3 human Fc mRNA-LNPs into OVCAR-5 tumor xenografts combined with intravenous injection of T cells significantly blocked xenograft tumor growth. Thus, EpCAM-CD3 hFc mRNA-LNP delivery to tumor cells shows strong potential for future clinical studies.
RESUMO
OBJECTIVE: To identify the elements of internet-based support interventions and assess their effectiveness at reducing psychological distress, anxiety and/or depression, physical variables (prevalence, severity and distress from physical symptoms) and improving quality of life, social support and self-efficacy among patients with breast cancer. DESIGN: Systematic review and narrative synthesis. DATA SOURCES: Web of Science, Cochrane Library, PubMed, MEDLINE, PsycINFO, CINAHL, CNKI, Wanfang and VIP from over the past 5 years of each database to June 2021. ELIGIBILITY CRITERIA FOR STUDY SELECTION: Included were randomised controlled trials (RCTs) or quasi-experimental (QE) studies focusing on internet-based support interventions in patients with breast cancer. DATA EXTRACTION AND SYNTHESIS: Reviewers independently screened, extracted data and assessed risk of bias (Cochrane Collaboration' risk of bias tool, Joanna Briggs Institute reviewer's manual). Narrative synthesis included the effect and elements of internet-based support interventions for women with breast cancer. RESULTS: Out of 2842 articles, 136 qualified articles were preliminarily identified. After further reading the full text, 35 references were included, including 30 RCTs and five QE studies. Internet-based support interventions have demonstrated positive effects on women's quality of life and physical variables, but inconsistent effectiveness has been found on psychological distress, symptoms of anxiety and/or depression, social support and self-efficacy. CONCLUSIONS: Internet-based support interventions are increasingly being used as clinically promising interventions to promote the health outcomes of patients with breast cancer. Future research needs to implement more rigorous experimental design and include sufficient sample size to clarify the effectiveness of this internet-based intervention. PROSPERO REGISTRATION NUMBER: CRD42021271380.
Assuntos
Neoplasias da Mama , Intervenção Baseada em Internet , Ansiedade/prevenção & controle , Neoplasias da Mama/psicologia , Neoplasias da Mama/terapia , Feminino , Humanos , Narração , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
BCMA antigen is overexpressed in multiple myeloma cells and has been shown to be a promising target for novel cellular and antibody therapeutics. The humanized BCMA (clone 4C8A) antibody that effectively targeted multiple myeloma in a CAR (chimeric antigen receptor) format was used for designing several formats of bispecific BCMA-CD3 antibodies. Several different designs of univalent and bivalent humanized BCMA-CD3 CrossMAB and BCMA-FAB-CD3 ScFv-Fc antibodies were tested for binding with BCMA-positive cells and T cells and for killing by real time cytotoxic activity and IFN-gamma secretion with CHO-BCMA target cells and with multiple myeloma MM1S and H929 cell lines. All BCMA-CD3 antibodies demonstrated specific binding by FACS to CHO-BCMA, multiple myeloma cells, and to T cells with affinity Kd in the nM range. All antibodies with T cells specifically killed CHO-BCMA and multiple myeloma cells in a dose-dependent manner. The BCMA-CD3 antibodies with T cells secreted IFN-gamma with EC50 in the nM range. In addition, three BCMA bispecific antibodies had high in vivo efficacy using an MM1S xenograft NSG mouse model. The data demonstrate the high efficacy of novel hBCMA-CD3 antibodies with multiple myeloma cells and provide a basis for future pre-clinical and clinical development.
RESUMO
Layered bismuth oxychalcogenides have been demonstrated as potential candidates for high-speed and low-power electronics due to their outstanding environmental stability and high carrier mobility, but the photoelectric performance of bulk species is still far from satisfactory. Herein, a novel Bi9O7.5S6/CdS composite film with a type-II heterojunction has been successfully prepared by combining chemical bath deposition (CBD) and spin-coating technologies. The structure, morphology, optical and photoelectric properties of the samples were investigated systematically. The photoelectric current of the Bi9O7.5S6/CdS composite film was obtained as 32.49 µA cm-2 at 1 V, which is about 13.9-fold and 3.3-fold higher than those of bare Bi9O7.5S6 and CdS. An enhanced photoelectric response and photostability were achieved in the Bi9O7.5S6/CdS composite film, and can be appropriately attributed to the improved separation and transfer of photogenerated carriers driven by the type-II heterojunction. This work offers a promising route to develop high-performance visible-light photoelectric devices with type-II heterojunctions.