Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(26): e2310238, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38267815

RESUMO

Cesium lead halide (CsPbX3, X = Br, Cl, and I) nanocrystals (NCs) are widely concerned and applied in many fields due to the excellent photoelectric performance. However, the toxicity of Pb and the loss of luminescence in water limit its application in vivo. A stable perovskite nanomaterial with good bioimaging properties is developed by incorporating europium (Eu) in CsPbX3 NCs followed with the surface coating of silica (SiO2) shell (CsPbX3:Eu@SiO2). Through the surface coating of SiO2, the luminescence stability of CsPbBr3 in water is improved and the leakage of Pb2+ is significantly reduced. In particular, Eu doping inhibits the photoluminescence quantum yield reduction of CsPbBr3 caused by SiO2 coating, and further reduces the release of Pb2+. CsPbBr3:Eu@SiO2 nanoparticles (NPs) show efficient luminescence in water and good biocompatibility to achieve cell imaging. More importantly, CsPb(ClBr)3:Eu@SiO2 NPs are obtained by adjusting the halogen components, and green light and blue light are realized in zebrafish imaging, showing good imaging effect and biosafety. The work provides a strategy for advanced perovskite nanomaterials toward biological practical application.


Assuntos
Césio , Európio , Chumbo , Luminescência , Nanopartículas , Dióxido de Silício , Água , Peixe-Zebra , Animais , Dióxido de Silício/química , Európio/química , Nanopartículas/química , Chumbo/química , Césio/química , Água/química , Titânio/química , Óxidos , Compostos de Cálcio
2.
Chem Soc Rev ; 49(24): 9220-9248, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33165456

RESUMO

Rare earth (RE) elements are widely used in the luminescence and magnetic fields by virtue of their abundant 4f electron configurations. However, the overall performance and aqueous stability of single-component RE materials need to be urgently improved to satisfy the requirements for multifunctional applications. Carbon nanodots (CNDs) are excellent nanocarriers with abundant functional surface groups, excellent hydrophilicity, unique photoluminescence (PL) and tunable features. Accordingly, RE-CND hybrids combine the merits of both RE and CNDs, which dramatically enhance their overall properties such as luminescent and magnetic-optical imaging performances, leading to highly promising practical applications in the future. Nevertheless, a comprehensive review focusing on the introduction and in-depth understanding of RE-CND hybrid materials has not been reported to date. This review endeavors to summarize the recent advances of RE-CNDs, including their interaction mechanisms, general synthetic strategies and applications in fluorescence, biosensing and multi-modal biomedical imaging. Finally, we present the current challenges and the possible application perspectives of newly developed RE-CND materials. We hope this review will inspire new design ideas and valuable references in this promising field in the future.


Assuntos
Carbono/química , Meios de Contraste/química , Complexos de Coordenação/química , Corantes Fluorescentes/química , Metais Terras Raras/química , Pontos Quânticos/química , Animais , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Humanos , Imageamento por Ressonância Magnética , Imagem Óptica , Propriedades de Superfície , Nanomedicina Teranóstica
3.
Intern Emerg Med ; 19(2): 465-475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104038

RESUMO

In December 2022, the Chinese suffered widespread Omicron of SARS-CoV-2 with variable symptom severity and outcome. We wanted to develop a scoring model to predict the mortality risk of older Omicron pneumonia patients by analyzing admission data. We enrolled 227 Omicron pneumonia patients aged 60 years and older, admitted to our hospital from December 15, 2022, to January 16, 2023, and divided them randomly into a 70% training set and a 30% test set. The former were used to identify predictors and develop a model, the latter to verify the model, using the area under the receiver operating characteristic curve (AUC), the Hosmer-Lemeshow goodness-of-fit test, a calibration curve to test its performance and comparing it to the existing scores. The MLWAP score was calculated based on a multivariate logistic regression model to predict mortality with a weighted score that included immunosuppression, lactate ≥ 2.4, white blood cell count ≥ 6.70 × 109/L, age ≥ 77 years, and PaO2/FiO2 ≤ 211. The AUC for the model in the training and test sets was 0.852 (95% CI, 0.792-0.912) and 0.875 (95% CI, 0.789-0.961), respectively. The calibration curves showed a good fit. We grouped the risk scores into low (score 0-7 points), medium (8-10 points), and high (11-13 points). This model had a sensitivity of 0.849, specificity of 0.714, and better predictive ability than the CURB-65 and PSI scores (AUROC = 0.859 vs. 0.788 vs. 0.801, respectively). The MLWAP-mortality score may help clinicians to stratify hospitalized older Omicron pneumonia patients into relevant risk categories, rationally allocate medical resources, and reduce the mortality.


Assuntos
Pneumonia , Humanos , Pessoa de Meia-Idade , Idoso , Fatores de Risco , Curva ROC , SARS-CoV-2 , Contagem de Leucócitos , Mortalidade Hospitalar , Estudos Retrospectivos , Prognóstico
4.
NPJ Precis Oncol ; 8(1): 74, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521810

RESUMO

Rab27A is a small GTPase-mediating exosome secretion, which participates in tumorigenesis of multiple cancer types. Understanding the biological role of Rab27A in non-small cell lung cancer (NSCLC) is of great importance for oncological research and clinical treatment. In this study, we investigate the function and internal mechanism of Rab27A in NSCLC. Results show that Rab27A is overexpressed in NSCLC, and regulates the tumor proliferation, migration, invasion, and cell motility in vitro and in vivo, and is negatively regulated by miR-124. Further research reveals that upregulated Rab27A can induce the production of IFNα in the medium by mediating exosome secretion. Then IFNα activates TYK2/STAT/HSPA5 signaling to promote NSCLC cell proliferation and metastasis. This process can be suppressed by TYK2 inhibitor Cerdulatinib. These results suggest that Rab27A is involved in the pathogenesis of NSCLC by regulating exosome secretion and downstream signaling, and inhibitors targeting this axis may become a promising strategy in future clinical practice.

5.
Adv Healthc Mater ; 12(25): e2300748, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37314429

RESUMO

Disease or organ damage due to unhealthy living habits, or accidents, is inevitable. Discovering an efficient strategy to address these problems is urgently needed in the clinic. In recent years, the biological applications of nanotechnology have received extensive attention. Among them, as a widely used rare earth oxide, cerium oxide (CeO2 ) has shown good application prospects in biomedical fields due to its attractive physical and chemical properties. Here, the enzyme-like mechanism of CeO2 is elucidated, and the latest research progress in the biomedical field is reviewed. At the nanoscale, Ce ions in CeO2 can be reversibly converted between +3 and +4. The conversion process is accompanied by the generation and elimination of oxygen vacancies, which give CeO2 the performance of dual redox properties. This property facilitates nano-CeO2 to catalyze the scavenging of excess free radicals in organisms, hence providing a possibility for the treatment of oxidative stress diseases such as diabetic foot, arthritis, degenerative neurological diseases, and cancer. In addition, relying on its excellent catalytic properties, customizable life-signaling factor detectors based on electrochemical techniques are developed. At the end of this review, an outlook on the opportunities and challenges of CeO2 in various fields is provided.


Assuntos
Cério , Nanopartículas , Medicina de Precisão , Estresse Oxidativo , Cério/química , Antioxidantes , Nanopartículas/química
6.
Clin Respir J ; 17(10): 1048-1057, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37675831

RESUMO

OBJECTIVES: Pulmonary embolism (PE) is a life-threatening complication that can occur in patients with lung cancer. In this study, we aimed to identify risk factors and examine the clinical characteristics of advanced lung cancer patients with PE. METHODS: We conducted a retrospective review of patients admitted to our two hospitals between January 2020 and June 2022. The case group consisted of patients with lung cancer and PE, and a closely matched control group was included to identify risk factors. Statistical analysis was conducted using R language. RESULTS: A total of 4957 patients were reviewed, and 162 patients (comprising 54 cases and 108 controls) were included in this study. The prevalence of lung cancer with PE in the study population was 1.08%. The majority of patients were male, and the most common histological subtype was adenocarcinoma (67%), followed by squamous cell carcinoma, small cell carcinoma, and poorly differentiated non-small cell lung cancer. The majority of patients had a high performance status (PS) score, with 50% experiencing respiratory failure (mainly hypoxia) and 33% with deep vein thrombosis (DVT). Forty-eight percent of patients were diagnosed with concurrent PE. Further analysis showed that PE was an independent predictor of poor survival, and a PS score of >1 was an independent risk factor for PE in patients with lung cancer. CONCLUSION: Our study provides valuable insights into the epidemiology and prognosis of PE in lung cancer patients and suggests that a poor ECOG PS, which has not been previously reported, is an independent risk factor for PE.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Embolia Pulmonar , Humanos , Masculino , Feminino , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/epidemiologia , Estudos de Casos e Controles , Carcinoma Pulmonar de Células não Pequenas/complicações , Estudos Transversais , Embolia Pulmonar/diagnóstico , Fatores de Risco , Estudos Retrospectivos
7.
Nat Commun ; 14(1): 1478, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932098

RESUMO

Oxidative dehydrogenation of propane is a promising technology for the preparation of propene. Boron-based nonmetal catalysts exhibit remarkable selectivity toward propene and limit the generation of COx byproducts due to unique radical-mediated C-H activation. However, due to the high barrier of O-H bond cleavage in the presence of O2, the radical initialization of the B-based materials requires a high temperature to proceed, which decreases the thermodynamic advantages of the oxidative dehydrogenation reaction. Here, we report that the boron oxide overlayer formed in situ over metallic Ni nanoparticles exhibits extraordinarily low-temperature activity and selectivity for the ODHP reaction. With the assistance of subsurface Ni, the surface specific activity of the BOx overlayer reaches 93 times higher than that of bare boron nitride. A mechanistic study reveals that the strong affinity of the subsurface Ni to the oxygen atoms reduces the barrier of radical initiation and thereby balances the rates of the BO-H cleavage and the regeneration of boron hydroxyl groups, accounting for the excellent low-temperature performance of Ni@BOx/BN catalysts.

8.
J Int Med Res ; 51(3): 3000605231161481, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36935582

RESUMO

OBJECTIVE: We built a prediction model of mortality risk in patients the with Acinetobacter baumannii (AB)-caused hospital-acquired (HAP) and ventilator-associated pneumonia (VAP). METHODS: In this retrospective study, 164 patients with AB lower respiratory tract infection were admitted to the respiratory intensive care unit (RICU) from January 2019 to August 2021 (29 with HAP, 135 with VAP) and grouped randomly into a training cohort (n = 115) and a validation cohort (n = 49). Least absolute shrinkage and selection operator regression and multivariate Cox regression were used to identify risk factors of 90-day mortality. We built a nomogram prediction model and evaluated model discrimination and calibration using the area under the receiver operating characteristic curve (AUC) and calibration curves, respectively. RESULTS: Four predictors (days in intensive care unit, infection with carbapenem-resistant AB, days of carbapenem use within 90 days of isolating AB, and septic shock) were used to build the nomogram. The AUC of the two groups was 0.922 and 0.823, respectively. The predictive model was well-calibrated; decision curve analysis showed the proposed nomogram would obtain a net benefit with threshold probability between 1% and 100%. CONCLUSIONS: The nomogram model showed good performance, making it useful in managing patients with AB-caused HAP and VAP.


Assuntos
Acinetobacter baumannii , Pneumonia Associada à Ventilação Mecânica , Humanos , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/etiologia , Estudos Retrospectivos , Nomogramas , Carbapenêmicos , Unidades de Terapia Intensiva , Hospitais
9.
Cancer Med ; 12(14): 15691-15703, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37283308

RESUMO

BACKGROUND: Mitochondrial RNA polymerase (POLRMT) is essential for the expression of mitochondrial genes. In recent studies, POLRMT expression promoted non-small cell cancer cell proliferation in cell lines and xenografts. The present study investigated the impact of POLRMT expression and function on lung adenocarcinoma (LUAD) patients. METHOD: Multi-omics data (genomics, transcriptomics, and proteomics) from publicly available databases were used to assess the role of POLRMT expression and function in LUAD. These findings were further verified using cancer tissues from clinical samples. RESULTS: POLRMT was over-expressed in LUADs, with mutation frequencies ranging from 1.30% to 5.71%. Over-expression of POLRMT was associated with an abnormal clinicopathological condition resulting in a decreased lifespan. Furthermore, gene sets enrich analysis revealed that POLRMT expression was linked to WNT/beta-catenin signaling; the expression of downstream target genes was positively correlated with POLRMT expression. Also, POLRMT expression was positively correlated with immunosuppressive genes, thereby affecting immune infiltration. CONCLUSION: POLRMT is over-expressed in LUAD, thereby impacting patient survival. It is also involved in WNT/beta-catenin signaling and may affect tumor infiltration.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/patologia , Via de Sinalização Wnt/genética , RNA Polimerases Dirigidas por DNA/metabolismo
10.
ACS Nano ; 17(5): 4433-4444, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802532

RESUMO

Rational design of multifunctional biomaterials with customized architecture and on demand bioactivity is of great significance for bone tissue engineering (BTE) in modern society. Herein, a versatile therapeutic platform has been established by integrating cerium oxide nanoparticles (CeO2 NPs) into bioactive glass (BG) to fabricate three-dimensional (3D)-printed scaffolds, achieving a sequential therapeutic effect against inflammation and promoting osteogenesis toward bone defect. The antioxidative activity of CeO2 NPs plays a crucial role in alleviating the oxidative stress upon formation of bone defects. Subsequently, CeO2 NPs exert a promotion effect on the proliferation and osteogenic differentiation of rat osteoblasts through enhancing mineral deposition and alkaline phosphatase and osteogenic gene expression. Strikingly, the incorporation of CeO2 NPs bestows on the BG scaffolds greatly reinforced mechanical properties, improved biocompatibility, adequate cell adhesion, elevated osteogenic capability, and multifunctional performance in a single platform. In vivo studies on the treatment of rat tibial defect confirmed the better osteogenic properties of CeO2-BG scaffolds compared with pure BG scaffolds. Additionally, the employment of the 3D printing technique creates a proper porous microenvironment around the bone defect, which further facilitates the cell in-growth and new bone formation. This report provides a systematic study on CeO2-BG 3D-printed scaffolds prepared by simple ball milling method, achieving sequential and integral treatment in BTE based on a single platform.


Assuntos
Osteogênese , Alicerces Teciduais , Ratos , Animais , Regeneração Óssea , Engenharia Tecidual/métodos , Vidro , Impressão Tridimensional
11.
Adv Mater ; 35(25): e2300313, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36939167

RESUMO

Osteosarcoma occurs in children and adolescents frequently and leads to a high fatality rate. Although surgical resection is the most common methods in clinic, patients always suffer from tumor metastasis and recurrence and it is difficult for them to self-repair large bone defects. Furthermore, the postoperative infection from bacteria triggers an inflammatory response and hinders the bone-repair process. This work demonstrates a gadolinium (Gd)-complex and molybdenum sulfide (MoS2 ) co-doped N-acryloyl glycinamide (NAGA)/gelatin methacrylate (Gel-MA) multifunctional hydrogel (GMNG). The combination between NAGA and Gel-MA endows the GMNG with attractive mechanical properties and controllable degradation ability. The MoS2 improves the hydrogel system, which has excellent photothermal ability to kill tumor cells and inhibit bacterial infection both in vitro and in vivo. Based on the Gd-complex, the magnetic resonance imaging (MRI) effect can be used to monitor the position and degradation situation of the hydrogel. Notably, accompanied by the degradation of GMNG hydrogel, the gradually released Gd3+ from the hydrogel exhibits osteogenic property and could promote new bone formation efficiently in vivo. Therefore, this strategy supplies a method to prepare multifunctional bone-defect-repair materials and is expected to represent a significant guidance and reference to the development of biomaterials for bone tissue engineering.


Assuntos
Neoplasias Ósseas , Engenharia Tecidual , Criança , Humanos , Adolescente , Molibdênio , Recidiva Local de Neoplasia , Regeneração Óssea , Alicerces Teciduais , Osteogênese , Remodelação Óssea , Hidrogéis , Neoplasias Ósseas/terapia
12.
Front Med (Lausanne) ; 9: 877124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755034

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is a common and frequently encountered disease of respiratory apparatus and is vulnerable to infection. Increasing studies reveal that bacterial lysates play an encouraging role in preventing exacerbations in these patients. We here investigated the efficacy and safety of bacterial lysates in COPD. Methods: We performed systematic research on PubMed, EMBASE, the Cochrane Library (CENTRAL), and Web of Science by using the keywords and their synonyms for studies published before January 11, 2022. Two researchers screened the studies of literature independently according to the inclusion and exclusion criteria and extracted data from the included studies. Another two researchers assessed the risk of bias of each included using the Cochrane risk-of-bias tool. Meta-analysis was conducted using R (version 4.1.1, The R Foundation for Statistical Computing) and Review Manager (version 5.4.0, The Cochrane Collaboration). Results: A total of 12 studies were included in this meta-analysis, and the pooled results showed that bacterial lysates were effective to reduce exacerbation rate (overall: relative risk [RR] = 0.83, 95% confidence interval [CI] 0.72-0.96; alkaline bacterial lysate subgroup [OM-85]: RR = 0.87, 95% CI 0.77-0.98; mechanical bacterial lysate subgroup [Ismigen]: RR = 0.70, 95% CI 0.41-1.20) and mean number of exacerbations (overall: MD = -0.42, 95% CI -0.75 to -0.08; alkaline bacterial lysate subgroup [OM-85]: MD = -0.72, 95% CI -1.35 to -0.09; mechanical bacterial lysate subgroup [Ismigen]: MD = -0.02, 95% CI -0.21 to 0.17). Bacterial lysates were also found beneficial in alleviating symptoms. The side effects were acceptable and slight. Conclusion: Bacterial lysates can benefit patients with COPD by reducing exacerbations and alleviating symptoms. OM-85 is the preferable product based on the existing evidence. Further studies are needed to validate these findings. Systematic Review Registration: [www.crd.york.ac.uk/prospero/], identifier [CRD42022299420].

13.
Transl Cancer Res ; 11(3): 444-455, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35402174

RESUMO

Background: Serine hydroxymethyltransferase (SHMT) is critical for one-carbon unit metabolism and is increasingly reported to be associated with tumor patients' outcomes. Thus, we designed and performed this meta-analysis to reveal its prognostic role and relationship with clinicopathological characteristics in human cancer. Methods: A systematic search of PubMed, Embase, Web of Science and Cochrane Library (CENTRAL) was carried out. Two reviewers independently screened all references for eligibility according to the inclusion criteria. The Newcastle-Ottawa Quality Assessment Scale was used to assess the quality and data was extracted for the meta-analysis. Results: Ten studies, composed of 1,942 patients in total, were included in this meta-analysis. Higher expression of SHMT2 means an unfavorable prognosis [overall survival: hazard ratio (HR) =2.14, 95% confidence interval (CI): 1.53 to 2.99; progression-free survival (PFS)/disease-free survival (DFS)/recurrence-free survival (RFS): HR =1.90, 95% CI: 1.31 to 2.76]. Furthermore, higher SHMT2 expression is associated with larger tumor size [odds ratio (OR) =2.09, 95% CI: 1.58 to 2.77], more lymph node invasions [OR =2.67, 95% CI: 1.78 to 4.00), and higher tumor node metastasis classification (TNM) stage (OR =2.23, 95% CI: 1.55 to 3.21). Higher expression of SHMT2 is also related to higher histopathological grade (OR =3.46, 95% CI: 1.46 to 8.27) and distant metastasis (OR =1.25, 95% CI: 0.32 to 4.90), however, with significant heterogeneity (I2=61%, P=0.08 for distant metastasis; I2=82%, P<0.001 for histopathological grade). The prognostic clinical role of SHMT1 in clinical patients has not been directly investigated yet. Discussion: SHMT2 may serve as a promising prognostic biomarker in various cancer, especially in the alimentary system. Further large-scale studies are warranted to verify the possible effect.

14.
Biomed Res Int ; 2022: 3149887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845924

RESUMO

Background: Colorectal cancer (CRC), one of the main causes of death, remains a leading cause of mortality in gastrointestinal cancer and tends to affect the younger generation. However, the pathological process of colorectal cancer is unclear. Exploring potential pathogenesis and therapeutic targets of CRC is significant as its high prevalence and high mortality. Nowadays, the rapid development of bioinformatics provides us an opportunity to explore potential molecular markers of CRC. Materials and Methods: First, three CRC gene chips with paracancerous controls were downloaded from the Gene Expression Omnibus (GEO) database. Second, after combining and batch correcting the three chips using the R language and Perl language, the differentially expressed genes (DEGs) were selected to investigate how they affect the CRC occurrence and development by GO and KEGG enrichment analysis. Third, based on the STRING website and the Cytoscape software, the protein-protein interaction (PPI) network was constructed and the core genes were screened out. Finally, through polymerase chain reaction (PCR) and immunohistochemistry (IHC), the expression and function of the core gene CXCL8 in CRC were explored. Results: GSE10950, GSE44076, and GSE75970, including 126 intestinal cancer samples and 126 paracancer samples, were screened as the datasets. 192 DEGs were screened, including 43 upregulated genes and 149 downregulated genes. Through the DEGs screened out, GO enrichment analysis, KEGG enrichment analysis, and the construction of PPI interaction network were carried out. Finally, according to the nodes and edges in the PPI network, the DEGs were sorted and the core genes were selected. Through basic experiments, the first ranked CXCL8 was further studied, and the results suggest that the expression of CXCL8 is related to the proliferation, migration, invasion, and even distant metastasis of CRC. Conclusion: The present study showed that DEGs of CRC are associated with multiple tumor-related biological processes and signaling pathways. The core gene CXCL8 has the potential to be a new therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Biologia Computacional , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Humanos , Prognóstico , Mapas de Interação de Proteínas/genética
15.
Phytochemistry ; 183: 112611, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341665

RESUMO

Magnetic solid phase extraction integrated with in situ derivations for the profiling of 12 phytohormones in a single rapeseed seed was developed by using ultra-high performance liquid chromatography-tandem mass spectrometry. The Fe3O4@Ti3C2@ß-cyclodextrin nanoparticles were firstly synthesized and used as an adsorbent for the solid-phase extraction of phytohormones. The magnetic dispersive solid-phase extraction and in situ derivation by the addition of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide were ingeniously combined. This efficient pre-treatment method integrated the extraction, purification, and derivatization processes into one single step. Satisfactory methodological performance was achieved by optimization of the parameters. Linearities (R2 > 0.9928) and recoveries (80.4 %-115.1%) at three spiked levels, as well as the low matrix effect (from -16.63% to 17.06%) and limits of detection (0.89-13.62 pg/mL) were obtained. The spatio-temporal profiling of target phytohormones in different tissues of rapeseed germination was investigated. This method was successfully employed for analyzing target phytohormones in different oilseeds samples.


Assuntos
Reguladores de Crescimento de Plantas , beta-Ciclodextrinas , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Limite de Detecção , Fenômenos Magnéticos , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Titânio
16.
Adv Healthc Mater ; 10(13): e2100033, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050615

RESUMO

Chronic wounds, such as the diabetic ulcer wounds have serious effect on people's lives, and can even lead to death. Diabetic ulcer wounds are different from normal wounds and much easier to be infected and induce oxidative stress due to the special surrounding microenvironment, which makes it necessary to prepare materials with antibacterial property and antioxidant activity simultaneously. The molybdenum disulfide-ceria (MoS2 -CeO2 ) nanocomposite possesses both the photo-thermal therapy (PTT) antibacterial capability of polyethylene glycol modified molybdenum disulfide nanosheets and the antioxidant activity of cerium dioxide nanoparticles (CeO2 NPs). By combining the inherent antibacterial activity of CeO2 NPs, the MoS2 -CeO2 nanocomposite exhibits excellent PTT antibacterial capability against both gram-positive and gram-negative bacteria through 808 nm laser treatment, thereby reducing the risk of wound infection. Owing to the abundant oxygen vacancies in CeO2 NPs, Ce3+ and Ce4+ can transform reversibly which endows MoS2 -CeO2 nanocomposite with remarkable antioxidant ability to clear away the excessive reactive oxygen species around the diabetic ulcer wounds and promote wound healing. The results demonstrate that MoS2 -CeO2 nanocomposite is a promising class for the clinical treatment of chronic wounds especially the diabetic ulcer wounds, and 808 nm laser can be used as a PTT antibacterial switch.


Assuntos
Antibacterianos , Antioxidantes , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Cicatrização
17.
RSC Adv ; 11(47): 29702-29710, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479555

RESUMO

A mild, efficient and eco-friendly method for the oxidation of 1-Bn-DHIQs to 1-Bz-DHIQs without concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs is very important for the syntheses of 1-Bz-DHIQ alkaloids and analogues. In this article, we developed a novel Cu(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp3)-H bonds adjacent to the C-1 positions of various 1-Bn-DHIQs. It was observed that when 0.2 equiv. of Cu(OAc)2·2H2O was used as the catalyst, 3.0 equiv. of AcOH was used as the additive and air (O2) was used as a clean oxidant, various 1-Bn-DHIQs could be efficiently oxidized to corresponding 1-Bz-DHIQs at 25 °C in DMSO. Especially, almost no concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs was observed during the above reaction. In addition, this method was successfully applied in the first total synthesis of the alkaloid canelillinoxine.

18.
ACS Omega ; 6(26): 17103-17112, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34250367

RESUMO

Novel highly stereoselective syntheses of (+)-streptol and (-)-1-epi-streptol starting from naturally abundant (-)-shikimic acid were described in this article. (-)-Shikimic acid was first converted to the common key intermediate by 11 steps in 40% yield. It was then converted to (+)-streptol by three steps in 72% yield, and it was also converted to (-)-1-epi-streptol by one step in 90% yield. In summary, (+)-streptol and (-)-1-epi-streptol were synthesized from (-)-shikimic acid by 14 and 12 steps in 29 and 36% overall yields, respectively.

19.
Can Respir J ; 2020: 7406457, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178363

RESUMO

Background: Although the efficacy and safety of high-flow nasal cannula (HFNC) in hypoxemic respiratory failure are widely recognized, it is yet unclear whether HFNC can effectively reduce the intubation rate and mortality in hypercapnic respiratory failure. We performed a systematic review and meta-analysis to assess the safety and efficiency of HFNC in these patients. Methods: A systematic search of PubMed, Embase, and Cochrane Library (CENTRAL) was carried out. Two reviewers independently screened all references according to the inclusion criteria. We used the Cochrane risk-of-bias tool and the Newcastle-Ottawa Quality Assessment Scale to assess the quality of randomized controlled trials (RCTs) and cohort studies, respectively. Data from eligible trials were extracted for the meta-analysis. Results: Eight studies with a total of 621 participants were included (six RCTs and two cohort studies). Our analysis showed that HFNC is noninferior to noninvasive ventilation (NIV) with respect to intubation rate in both RCTs (OR = 0.92, 95% CI: 0.45-1.88) and cohort studies (OR = 0.94, 95% CI: 0.55-1.62). Similarly, the analysis of cohort studies showed no difference in reducing mortality rates (OR = 0.96, 95% CI: 0.42-2.20). Based on RCTs, NIV seemed more effective in reducing mortality (OR = 1.33, 95% CI: 0.68-2.60), but the intertreatment difference was not statistically significant. Furthermore, no significant differences were found between HFNC and NIV relating to change of blood gas analysis or respiratory rate (MD = -0.75, 95% CI: -2.6 to 1.09). Likewise, no significant intergroup differences were found with regard to intensive care unit stay (SMD = -0.07, 95% CI: 0.26 to 0.11). Due to a physiological friendly interface and variation, HFNC showed a significant advantage over NIV in patients' comfort and complication of therapy. Conclusion: Despite the limitations noted, HFNC may be an effective and safe alternative to prevent endotracheal intubation and mortality when NIV is unsuitable in mild-to-moderate hypercapnia. Further high-quality studies are needed to validate these findings.


Assuntos
Ventilação não Invasiva , Insuficiência Respiratória , Cânula , Humanos , Intubação Intratraqueal , Oxigenoterapia , Insuficiência Respiratória/terapia
20.
ACS Appl Bio Mater ; 3(12): 9135-9144, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019591

RESUMO

Developing multifunctional nanoplatforms that combine controlled drug release, therapy, and real-time monitoring of intracellular distribution of therapeutic agents can provide a solution for practical precision cancer therapy. Herein, a daylight activatable and red to near-infrared (NIR) dual-imaging guided multifunctional anticancer nanoplatform based on diselenium-conjugated and aggregation-induced emission fluorogen (AIEgen)-cross-linked oligoethylenimine polymer loaded with cisplatin (Pt) and biscyclometalated iridium(III) (Ir(III)) complex (Pt&Ir@P NPs) is reported. Upon short-time daylight irradiation, the nanoplatform generates reactive oxygen species (ROS), which help them to escape from endo/lysosomes via enhanced lysosomal membrane permeability. Meanwhile, the chemotherapeutic drug cisplatin and the photosensitizer (PS) Ir(III) complex are released via breaking the ROS-labile diselenium bond. The released PS, together with AIEgen, respond to the continuous long-time daylight irradiation and produce more ROS, inducing photodynamic therapy (PDT) and damaging the nucleus. Along with PDT, selenium liberates cisplatin and exerts chemotherapy in the presence of endogenous spermine. In addition, the red/NIR emitting Ir(III) complex and the engineered AIEgen act as dual-imaging agents for real-time monitoring the distribution of PS and polymer. This daylight responsive multifunctional nanoplatform for efficient anticancer therapy and imaging could provide an intriguing strategy for developing theranostic antitumor platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA