Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA Biol ; 17(12): 1707-1720, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32559119

RESUMO

The findings that an RNA is not necessarily either coding or non-coding, or that a precursor RNA can produce different types of mature RNAs, whether coding or non-coding, long or short, have challenged the dichotomous view of the RNA world almost 15 years ago. Since then, and despite an increasing number of studies, the diversity of information that can be conveyed by RNAs is rarely searched for, and when it is known, it remains largely overlooked in further functional studies. Here, we provide an update with prominent examples of multiple functions that are carried by the same RNA or are produced by the same precursor RNA, to emphasize their biological relevance in most living organisms. An important consequence is that the overall function of their locus of origin results from the balance between various RNA species with distinct functions and fates. The consideration of the molecular basis of this multiplicity of information is obviously crucial for downstream functional studies when the targeted functional molecule is often not the one that is believed.


Assuntos
Regulação da Expressão Gênica , RNA/genética , Animais , Evolução Molecular , Éxons , Humanos , Íntrons , Fases de Leitura Aberta , Splicing de RNA , RNA Circular , RNA não Traduzido/genética
2.
Nucleic Acids Res ; 45(8): 4768-4781, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28053119

RESUMO

Introns represent almost half of the human genome, although they are eliminated from transcripts through RNA splicing. Yet, different classes of non-canonical miRNAs have been proposed to originate directly from intron splicing. Here, we considered the alternative splicing of introns as an interesting source of miRNAs, compatible with a developmental switch. We report computational prediction of new Short Intron-Derived ncRNAs (SID), defined as precursors of smaller ncRNAs like miRNAs and snoRNAs produced directly by splicing, and tested their dependence on each key factor in canonical or alternative miRNAs biogenesis (Drosha, DGCR8, DBR1, snRNP70, U2AF65, PRP8, Dicer, Ago2). We found that about half of predicted SID rely on debranching of the excised intron-lariat by the enzyme DBR1, as proposed for mirtrons. However, we identified new classes of SID for which miRNAs biogenesis may rely on intermingling between canonical and alternative pathways. We validated selected SID as putative miRNAs precursors and identified new endogenous miRNAs produced by non-canonical pathways, including one hosted in the first intron of SRA (Steroid Receptor RNA activator). Consistent with increased SRA intron retention during myogenic differentiation, release of SRA intron and its associated mature miRNA decreased in cells from healthy subjects but not from myotonic dystrophy patients with splicing defects.


Assuntos
Íntrons/genética , MicroRNAs/genética , RNA não Traduzido/genética , Processamento Alternativo/genética , Biologia Computacional , Genoma Humano , Humanos , MicroRNAs/biossíntese , Precursores de RNA/genética
3.
Int J Mol Sci ; 16(3): 4429-52, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25710723

RESUMO

Introns represent almost half of the human genome, yet their vast majority is eliminated from eukaryotic transcripts through RNA splicing. Nevertheless, they feature key elements and functions that deserve further interest. At the level of DNA, introns are genomic segments that can shelter independent transcription units for coding and non-coding RNAs which transcription may interfere with that of the host gene, and regulatory elements that can influence gene expression and splicing itself. From the RNA perspective, some introns can be subjected to alternative splicing. Intron retention appear to provide some plasticity to the nature of the protein produced, its distribution in a given cell type and timing of its translation. Intron retention may also serve as a switch to produce coding or non-coding RNAs from the same transcription unit. Conversely, splicing of introns has been directly implicated in the production of small regulatory RNAs. Hence, splicing of introns also appears to provide plasticity to the type of RNA produced from a genetic locus (coding, non-coding, short or long). We addressed these aspects to add to our understanding of mechanisms that control the fate of introns and could be instrumental in regulating genomic output and hence cell fate.


Assuntos
Processamento Alternativo , Genoma/genética , Íntrons/genética , RNA Mensageiro/genética , Animais , Éxons/genética , Regulação da Expressão Gênica , Variação Genética , Humanos , Modelos Genéticos
4.
Nucleic Acids Res ; 39(2): 513-25, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20855289

RESUMO

The steroid receptor RNA activator (SRA) has the unusual property to function as both a non-coding RNA (ncRNA) and a protein SRAP. SRA ncRNA is known to increase the activity of a range of nuclear receptors as well as the master regulator of muscle differentiation MyoD. The contribution of SRA to either a ncRNA or a protein is influenced by alternative splicing of the first intron, the retention of which disrupts the SRAP open reading frame. We reported here that the ratio between non-coding and coding SRA isoforms increased during myogenic differentiation of human satellite cells but not myotonic dystrophy patient satellite cells, in which differentiation capacity is affected. Using constructs that exclusively produce SRA ncRNA or SRAP, we demonstrated that whereas SRA ncRNA was indeed an enhancer of myogenic differentiation and myogenic conversion of non-muscle cells through the co-activation of MyoD activity, SRAP prevented this SRA RNA-dependant co-activation. Interestingly, the SRAP inhibitory effect is mediated through the interaction of SRAP with its RNA counterpart via its RRM-like domain interacting with the functional sub-structure of SRA RNA, STR7. This study thus provides a new model for SRA-mediated regulation of MyoD transcriptional activity in the promotion of normal muscle differentiation, which takes into account the nature of SRA molecules present.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , RNA não Traduzido/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Bases de Dados Genéticas , Variação Genética , Humanos , Camundongos , Distrofia Miotônica/genética , Ligação Proteica , Interferência de RNA , RNA Longo não Codificante , RNA não Traduzido/antagonistas & inibidores , RNA não Traduzido/química , Células Satélites de Músculo Esquelético/citologia
5.
Proc Natl Acad Sci U S A ; 107(20): 9281-6, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439742

RESUMO

Methylation of cytosine residues within the CpG dinucleotide in mammalian cells is an important mediator of gene expression, genome stability, X-chromosome inactivation, genomic imprinting, chromatin structure, and embryonic development. The majority of CpG sites in mammalian cells is methylated in a nonrandom fashion, raising the question of how DNA methylation is distributed along the genome. Here, we focused on the functions of DNA methyltransferase-3b (Dnmt3b), of which deregulated activity is linked to several human pathologies. We generated Dnmt3b hypomorphic mutant mice with reduced catalytic activity, which first revealed a deregulation of Hox genes expression, consistent with the observed homeotic transformations of the posterior axis. In addition, analysis of deregulated expression programs in Dnmt3b mutant embryos, using DNA microarrays, highlighted illegitimate activation of several germ-line genes in somatic tissues that appeared to be linked directly to their hypomethylation in mutant embryos. We provide evidence that these genes are direct targets of Dnmt3b. Moreover, the recruitment of Dnmt3b to their proximal promoter is dependant on the binding of the E2F6 transcriptional repressor, which emerges as a common hallmark in the promoters of genes found to be up-regulated as a consequence of impaired Dnmt3b activity. Therefore, our results unraveled a coordinated regulation of genes involved in meiosis, through E2F6-dependant methylation and transcriptional silencing in somatic tissues.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Fator de Transcrição E2F6/metabolismo , Inativação Gênica/fisiologia , Meiose/genética , Proteínas Repressoras/metabolismo , Animais , Western Blotting , Imunoprecipitação da Cromatina , Ilhas de CpG/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , DNA Metiltransferase 3B
6.
J Biol Chem ; 286(37): 32277-88, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21784860

RESUMO

NF-κB transcription factors are pivotal players in controlling inflammatory and immune responses, as well as cell proliferation and apoptosis. Aberrant regulation of NF-κB and the signaling pathways that regulate its activity have been involved in various pathologies, particularly cancers, as well as inflammatory and autoimmune diseases. NF-κB activation is tightly regulated by the IκB kinase (IKK) complex, which is composed of two catalytic subunits IKKα and IKKß, and a regulatory subunit IKKγ/NEMO. Although IKKα and IKKß share structural similarities, IKKα has been shown to have distinct biological functions. However, the molecular mechanisms that modulate IKKα activity have not yet been fully elucidated. To understand better the regulation of IKKα activity, we purified IKKα-associated proteins and identified ABIN-2. Here, we demonstrate that IKKα and IKKß both interact with ABIN-2 and impair its constitutive degradation by the proteasome. Nonetheless, ABIN-2 enhances IKKα- but not IKKß-mediated NF-κB activation by specifically inducing IKKα autophosphorylation and kinase activity. Furthermore, we found that ABIN-2 serine 146 is critical for the ABIN-2-dependent IKKα transcriptional up-regulation of specific NF-κB target genes. These results imply that ABIN-2 acts as a positive regulator of NF-κB-dependent transcription by activating IKKα.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Transcrição Gênica/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , NF-kappa B/genética , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação para Cima/fisiologia
7.
Noncoding RNA ; 8(5)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36287115

RESUMO

Pseudouridylation is one of the most abundant modifications found in RNAs. To identify the Pseudouridylation sites (Psi) in RNAs, several techniques have been developed, but the most common and robust is the CMC (N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide) treatment, which consists in the addition of an adduct on Psi that inhibits the reverse transcription. Here, we describe a turnkey method and a tool to design the bridging oligo (DBO), which is somewhat difficult to design. Finally, we propose a trouble-shooting guide to help users.

8.
Noncoding RNA ; 8(3)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35645338

RESUMO

We are delighted to share with you our eleventh Journal Club and highlight some of the most interesting papers published recently [...].

9.
FEBS J ; 289(7): 1858-1875, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739170

RESUMO

Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA-seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α-Satellite RNAs. We showed that α-Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α-Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α-Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor-binding motifs within α-Satellite centromeric arrays. Using high-resolution three-dimensional immuno-FISH and ChIP-qPCR, we showed an association between the α-Satellite upregulation and the recruitment of the transcription factor NFY-A to the centromere upon MG132-induced proteasome inhibition. Together, our results show that the proteasome controls α-Satellite RNAs associated with the regulation of mitosis.


Assuntos
Complexo de Endopeptidases do Proteassoma , RNA Satélite , Centrômero/genética , Centrômero/metabolismo , DNA Satélite/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Satélite/genética , Regulação para Cima
10.
Nucleic Acids Res ; 37(15): 5071-80, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19542185

RESUMO

Non-coding RNAs are emerging as key players in many fundamental biological processes, including specification of higher-order chromatin structure. We examined the implication of RNA transcribed from mouse centromeric minor satellite repeats in the formation and function of centromere-associated complexes. Here we show that the levels of minor satellite RNA vary during cell-cycle progression, peaking in G2/M phase, concomitant with accumulation of proteins of the chromosomal passenger complex near the centromere. Consistent with this, we describe that murine minor satellite RNA are components of CENP-A-associated centromeric fractions and associate with proteins of the chromosomal passenger complex Aurora B and Survivin at the onset of mitosis. Interactions of endogenous Aurora B with CENP-A and Survivin are sensitive to RNaseA. Likewise, the kinase activity of Aurora B requires an RNA component. More importantly, Aurora B kinase activity can be potentiated by minor satellite RNA. In addition, decreased Aurora B activity after RNA depletion can be specifically rescued by restitution of these transcripts. Together, our data provide new functional evidence for minor satellite transcripts as key partners and regulators of the mitotic kinase Aurora B.


Assuntos
Centrômero/química , Cromatina/química , Proteínas Serina-Treonina Quinases/metabolismo , RNA não Traduzido/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Autoantígenos/análise , Ciclo Celular/genética , Linhagem Celular , Proteína Centromérica A , Proteínas Cromossômicas não Histona/análise , DNA Satélite , Proteínas Inibidoras de Apoptose , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/genética , RNA não Traduzido/análise , Proteínas Repressoras , Survivina
11.
Nucleic Acids Res ; 37(13): 4518-31, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19483093

RESUMO

Products of the Steroid Receptor RNA Activator gene (SRA1) have the unusual property to modulate the activity of steroid receptors and other transcription factors both at the RNA (SRA) and the protein (SRAP) level. Balance between these two genetically linked entities is controlled by alternative splicing of intron-1, whose retention alters SRAP reading frame. We have previously found that both fully-spliced SRAP-coding and intron-1-containing non-coding SRA RNAs co-exist in breast cancer cell lines. Herein, we report a significant (Student's t-test, P < 0.003) higher SRA-intron-1 relative expression in breast tumors with higher progesterone receptor contents. Using an antisense oligoribonucleotide, we have successfully reprogrammed endogenous SRA splicing and increased SRA RNA-intron-1 relative level in T5 breast cancer cells. This increase is paralleled by significant changes in the expression of genes such as plasminogen urokinase activator and estrogen receptor beta. Estrogen regulation of other genes, including the anti-metastatic NME1 gene, is also altered. Overall, our results suggest that the balance coding/non-coding SRA transcripts not only characterizes particular tumor phenotypes but might also, through regulating the expression of specific genes, be involved in breast tumorigenesis and tumor progression.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Oligorribonucleotídeos Antissenso , RNA não Traduzido/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Estradiol/farmacologia , Feminino , Humanos , Íntrons , Oligorribonucleotídeos Antissenso/química , RNA Longo não Codificante , RNA não Traduzido/química , RNA não Traduzido/genética , Receptores de Progesterona/metabolismo
12.
Noncoding RNA ; 7(3)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34564318

RESUMO

Small non-coding RNAs (sncRNAs) represent an important class of regulatory RNAs involved in the regulation of transcription, RNA splicing or translation. Among these sncRNAs, small nucleolar RNAs (snoRNAs) mostly originate from intron splicing in humans and are central to posttranscriptional regulation of gene expression. However, the characterization of the complete repertoire of sncRNAs in a given cellular context and the functional annotation of the human transcriptome are far from complete. Here, we report the large-scale identification of sncRNAs in the size range of 50 to 200 nucleotides without a priori on their biogenesis, structure and genomic origin in the context of normal human muscle cells. We provided a complete set of experimental validation of novel candidate snoRNAs by evaluating the prerequisites for their biogenesis and functionality, leading to their validation as genuine snoRNAs. Interestingly, we also found intergenic snoRNAs, which we showed are in fact integrated into candidate introns of unannotated transcripts or degraded by the Nonsense Mediated Decay pathway. Hence, intergenic snoRNAs represent a new type of landmark for the identification of new transcripts that have gone undetected because of low abundance or degradation after the release of the snoRNA.

13.
Noncoding RNA ; 4(3)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231579

RESUMO

We are delighted to share with you our sixth Journal Club and highlight some of the most interesting papers published recently [...].

14.
Noncoding RNA ; 3(2)2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29657292

RESUMO

We are delighted to share with you our fifth Journal Club and highlight some of the most interesting papers published recently.[...].

15.
Front Biosci ; 11: 1577-84, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16368538

RESUMO

Identifying particular motifs responsible for promoter activity is a crucial step toward the development of new gene-based preventive and therapeutic strategies. However, to date, experimental methods to study promoter activity remain limited. We present in this report a promoter competition assay designed to identify, within a given promoter region, motifs critical for its activity. This assay consists in co-transfecting the promoter to be analyzed and double-stranded oligonucleotides which will compete for the binding of transcription factors. Using the recently characterized SBEM promoter as model, we first delineated the feasibility of the method and optimized the experimental conditions. We then identified, within an 87-bp region responsible for a strong expression of the reporter gene, an octamer-binding site essential for its transcriptional regulation. The importance of this motif has been confirmed by site-directed mutagenesis. The promoter competition assay appears to be a fast and efficient approach to identify, within a given promoter sequence, sites critical for its activity.


Assuntos
Genes Reporter , Técnicas Genéticas , Regiões Promotoras Genéticas , Transcrição Gênica , Motivos de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Células Cultivadas , Biologia Computacional , Regulação da Expressão Gênica , Humanos , Luciferases/metabolismo , Modelos Genéticos , Mucinas/metabolismo , Mutagênese Sítio-Dirigida , Fator 1 de Transcrição de Octâmero/metabolismo , Plasmídeos/metabolismo , Fatores de Transcrição/metabolismo , Transfecção
16.
Front Biosci ; 11: 2483-95, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16720387

RESUMO

e human small breast epithelial mucin (SBEM) gene has been identified as being preferentially expressed in mammary epithelial cells and over-expressed in breast tumors. In this report, we have characterized the promoter of SBEM gene in order to identify sequences responsible for this strong mammary expression. A series of SBEM promoter/luciferase constructs were transiently transfected into both breast (MCF-7, BT-20) and non-breast (HeLa and HepG2) cell lines. In addition to the minimal promoter and to a repressor region, we have identified an 87-bp sequence (-357/-270) driving a strong breast-specific expression. Site-directed mutagenesis of a putative octamer-binding transcription factor binding site located within this latter region led to a strong decrease of the transcriptional activity of the SBEM promoter. Furthermore, transient over-expression of Oct1 and Oct2 not only increased SBEM promoter reporter activity, but also enhanced endogenous SBEM mRNA level. Overall, the data suggest that octamer-binding transcription factors participate in the strong expression of SBEM gene in breast tissues. Clarifying the SBEM gene regulation will help to dissect mechanisms underlying transcription of normal breast and breast cancer-associated genes.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Mucinas/biossíntese , Mucinas/genética , Fatores de Transcrição de Octâmero/metabolismo , Sítios de Ligação , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/patologia , Feminino , Células HeLa , Humanos , Neoplasias Hepáticas/patologia , Mutagênese Sítio-Dirigida , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Transportador 1 de Cátions Orgânicos/fisiologia , Transportador 2 de Cátion Orgânico , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição , Transcrição Gênica
17.
DNA Cell Biol ; 25(7): 418-28, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16848684

RESUMO

The Steroid Receptor RNA Activator 1 (SRA1) has originally been described as a noncoding RNA specifically activating steroid receptor transcriptional activity. We have, however, identified, in human breast tissue, exon- 1 extended SRA1 isoforms containing two initiating AUG codons and encoding a protein we called SRAP. We recently reported a decreased estrogen receptor activity in breast cancer cells overexpressing SRAP, suggesting antagonist roles played by SRA1 RNA and SRAP. SRA1 appears to be the first example of a molecule active both at the RNA and at the protein level. No data are currently available regarding the mechanisms possibly involved in the generation of coding and noncoding functional SRA1 RNAs. Using 5'-Rapid Amplification of cDNA Extremities (5'-RACE), we have herein identified several putative transcription initiation sites surrounding the second methionine codon and used to generate coding SRA1 transcripts. In the process, we also identified an alternatively spliced noncoding SRA1 transcript still containing an intron-1 sequence. Using targeted RT-PCR approaches, we confirmed the presence in breast cancer cell lines of SRA1 RNAs containing a full as well as a partial intron-1 sequence and established that the relative proportion of these RNAs varied within breast cancer cell lines. Using a "minigene" strategy, we also showed that artificial RNAs containing the SRA1 intron-1 sequence are alternatively spliced in breast cancer cell lines. Interestingly, the splicing pattern of the minigene products parallels the one of the endogenous SRA1 transcripts. Altogether, our data suggest that the primary genomic sequence in and around intron-1 is sufficient to lead to a differential splicing of this intron. We propose that alternative splicing of intron-1 is one mechanism used by breast cancer cells to regulate the balance between coding and functional noncoding SRA1 RNAs.


Assuntos
Processamento Alternativo , RNA Neoplásico/genética , RNA não Traduzido/genética , Sequência de Bases , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Feminino , Engenharia Genética , Humanos , Íntrons , Isoformas de Proteínas/genética , RNA Longo não Codificante , Sítio de Iniciação de Transcrição
18.
Noncoding RNA ; 1(2): 127-138, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29861419

RESUMO

Currently, the discovery of new small ncRNAs requires high throughput methods even in the case of focused research on the regulation of specific genes or set of genes. We propose herein a simple, rapid, efficient, and cost effective method to clone and sequence single, yet unknown, small ncRNA. This technique that we called "Pocket-sized RNA-Seq" or psRNA-seq is based on in vitro transcription, RNA pull down and adapted RACE-PCR methods that allow its implementation using either available commercial kits or in-house reagents.

19.
Thromb Res ; 105(3): 217-23, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11927127

RESUMO

Tissue factor pathway inhibitor-2 (TFPI-2) displays structural similarities with TFPI-1, the major inhibitor of tissue factor (TF)/, factor VIIa. It is synthesized mostly by syncytiotrophoblast in the placenta, but its physiological functions are not fully understood. We studied the synthesis of TFPI-2 mRNA and that of TFPI-1 and TF in three human trophoblast cell lines, JAR, BeWo, and JEG-3. We first developed specific competitive reverse transcription-polymerase chain reaction (RT-PCR) assays for each gene studied using human umbilical vein endothelial cells (HUVEC). The three trophoblast cell lines strongly synthesized TF mRNA whereas the synthesis of TFPI-1 mRNA was very low. TFPI-2 mRNA was not detected in unstimulated or stimulated JAR cells. In contrast, JEG-3 and, to a lesser extent, BeWo produced significant amounts of TFPI-2 mRNA, which were significantly increased after stimulation with phorbol 12-myristate 13-acetate (PMA). However, tumor necrosis factor-alpha (TNF-alpha) had no effect on this synthesis. JEG-3 and BeWo are thus two cell lines that could be used to study TFPI-2 gene regulation and to investigate the role of TF, TFPI-1, and TFPI-2 during trophoblast differentiation.


Assuntos
Glicoproteínas/biossíntese , Trofoblastos/metabolismo , Linhagem Celular , Feminino , Glicoproteínas/genética , Humanos , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Front Genet ; 5: 316, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250049

RESUMO

To date, the main criterion by which long ncRNAs (lncRNAs) are discriminated from mRNAs is based on the capacity of the transcripts to encode a protein. However, it becomes important to identify non-ORF-based sequence characteristics that can be used to parse between ncRNAs and mRNAs. In this study, we first established an extremely selective workflow to define a highly refined database of lncRNAs which was used for comparison with mRNAs. Then using this highly selective collection of lncRNAs, we found the CG dinucleotide frequencies were clearly distinct. In addition, we showed that the bias in CG dinucleotide frequency was conserved in human and mouse genomes. We propose that this sequence feature will serve as a useful classifier in transcript classification pipelines. We also suggest that our refined database of "bona fide" lncRNAs will be valuable for the discovery of other sequence characteristics distinct to lncRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA