Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(13): 8693-8711, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37254796

RESUMO

Cortical columns of direction-selective neurons in the motion sensitive area (MT) have been successfully established as a microscopic feature of the neocortex in animals. The same property has been investigated at mesoscale (<1 mm) in the homologous brain area (hMT+, V5) in living humans by using ultra-high field functional magnetic resonance imaging (fMRI). Despite the reproducibility of the selective response to axis-of-motion stimuli, clear quantitative evidence for the columnar organization of hMT+ is still lacking. Using cerebral blood volume (CBV)-sensitive fMRI at 7 Tesla with submillimeter resolution and high spatial specificity to microvasculature, we investigate the columnar functional organization of hMT+ in 5 participants perceiving axis-of-motion stimuli for both blood oxygenation level dependent (BOLD) and vascular space occupancy (VASO) contrast mechanisms provided by the used slice-selective slab-inversion (SS-SI)-VASO sequence. With the development of a new searchlight algorithm for column detection, we provide the first quantitative columnarity map that characterizes the entire 3D hMT+ volume. Using voxel-wise measures of sensitivity and specificity, we demonstrate the advantage of using CBV-sensitive fMRI to detect mesoscopic cortical features by revealing higher specificity of axis-of-motion cortical columns for VASO as compared to BOLD contrast. These voxel-wise metrics also provide further insights on how to mitigate the highly debated draining veins effect. We conclude that using CBV-VASO fMRI together with voxel-wise measurements of sensitivity, specificity and columnarity offers a promising avenue to quantify the mesoscopic organization of hMT+ with respect to axis-of-motion stimuli. Furthermore, our approach and methodological developments are generalizable and applicable to other human brain areas where similar mesoscopic research questions are addressed.


Assuntos
Mapeamento Encefálico , Neocórtex , Animais , Humanos , Mapeamento Encefálico/métodos , Reprodutibilidade dos Testes , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos
2.
Neuroimage ; 279: 120293, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562717

RESUMO

Layers and columns are the dominant processing units in the human (neo)cortex at the mesoscopic scale. While the blood oxygenation dependent (BOLD) signal has a high detection sensitivity, it is biased towards unwanted signals from large draining veins at the cortical surface. The additional fMRI contrast of vascular space occupancy (VASO) has the potential to augment the neuroscientific interpretability of layer-fMRI results by means of capturing complementary information of locally specific changes in cerebral blood volume (CBV). Specifically, VASO is not subject to unwanted sensitivity amplifications of large draining veins. Because of constrained sampling efficiency, it has been mainly applied in combination with efficient block task designs and long trial durations. However, to study cognitive processes in neuroscientific contexts, or probe vascular reactivity, short stimulation periods are often necessary. Here, we developed a VASO acquisition procedure with a short acquisition period and sub-millimeter resolution. During visual event-related stimulation, we show reliable responses in visual cortices within a reasonable number of trials (∼20). Furthermore, the short TR and high spatial specificity of our VASO implementation enabled us to show differences in laminar reactivity and onset times. Finally, we explore the generalizability to a different stimulus modality (somatosensation). With this, we showed that CBV-sensitive VASO provides the means to capture layer-specific haemodynamic responses with high spatio-temporal resolution and is able to be used with event-related paradigms.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Volume Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia
3.
Neuroimage ; 264: 119733, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375782

RESUMO

Mesoscopic (0.1-0.5 mm) interrogation of the living human brain is critical for advancing neuroscience and bridging the resolution gap with animal models. Despite the variety of MRI contrasts measured in recent years at the mesoscopic scale, in vivo quantitative imaging of T2* has not been performed. Here we provide a dataset containing empirical T2* measurements acquired at 0.35 × 0.35 × 0.35 mm3 voxel resolution using 7 Tesla MRI. To demonstrate unique features and high quality of this dataset, we generate flat map visualizations that reveal fine-scale cortical substructures such as layers and vessels, and we report quantitative depth-dependent T2* (as well as R2*) values in primary visual cortex and auditory cortex that are highly consistent across subjects. This dataset is freely available at https://doi.org/10.17605/OSF.IO/N5BJ7, and may prove useful for anatomical investigations of the human brain, as well as for improving our understanding of the basis of the T2*-weighted (f)MRI signal.


Assuntos
Córtex Auditivo , Neurociências , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Córtex Auditivo/diagnóstico por imagem
4.
Neuroimage ; 237: 118195, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038769

RESUMO

Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.


Assuntos
Volume Sanguíneo Cerebral/fisiologia , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Córtex Somatossensorial/diagnóstico por imagem , Percepção do Tato/fisiologia , Adulto , Animais , Estimulação Elétrica , Feminino , Humanos , Masculino , Imagem Óptica , Estimulação Física , Ratos , Reprodutibilidade dos Testes
5.
Neuroimage ; 237: 118091, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991698

RESUMO

High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain 'layerification' and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem Funcional , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Software , Neuroimagem Funcional/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
6.
PLoS One ; 18(2): e0280855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758009

RESUMO

The development of ultra high field fMRI signal readout strategies and contrasts has led to the possibility of imaging the human brain in vivo and non-invasively at increasingly higher spatial resolutions of cortical layers and columns. One emergent layer-fMRI acquisition method with increasing popularity is the cerebral blood volume sensitive sequence named vascular space occupancy (VASO). This approach has been shown to be mostly sensitive to locally-specific changes of laminar microvasculature, without unwanted biases of trans-laminar draining veins. Until now, however, VASO has not been applied in the technically challenging cortical area of the auditory cortex. Here, we describe the main challenges we encountered when developing a VASO protocol for auditory neuroscientific applications and the solutions we have adopted. With the resulting protocol, we present preliminary results of laminar responses to sounds and as a proof of concept for future investigations, we map the topographic representation of frequency preference (tonotopy) in the auditory cortex.


Assuntos
Córtex Auditivo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Volume Sanguíneo Cerebral/fisiologia , Córtex Auditivo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Córtex Cerebral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA