Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Glob Chang Biol ; 30(5): e17312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38736133

RESUMO

Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.


Assuntos
Espécies Introduzidas , Invertebrados , Dinâmica Populacional , Animais , Invertebrados/fisiologia , Europa (Continente) , Ecossistema , Água Doce
2.
Bioscience ; 73(8): 560-574, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37680688

RESUMO

Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.

3.
Proc Biol Sci ; 289(1987): 20221113, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36416041

RESUMO

The biological sciences community is increasingly recognizing the value of open, reproducible and transparent research practices for science and society at large. Despite this recognition, many researchers fail to share their data and code publicly. This pattern may arise from knowledge barriers about how to archive data and code, concerns about its reuse, and misaligned career incentives. Here, we define, categorize and discuss barriers to data and code sharing that are relevant to many research fields. We explore how real and perceived barriers might be overcome or reframed in the light of the benefits relative to costs. By elucidating these barriers and the contexts in which they arise, we can take steps to mitigate them and align our actions with the goals of open science, both as individual scientists and as a scientific community.


Assuntos
Disciplinas das Ciências Biológicas , Motivação , Disseminação de Informação
4.
Glob Chang Biol ; 28(15): 4620-4632, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35570183

RESUMO

Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Europa (Continente) , Nova Zelândia , Caramujos
5.
Ecol Appl ; 30(1): e01988, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31361929

RESUMO

While generality is often desirable in ecology, customized models for individual species are thought to be more predictive by accounting for context specificity. However, fully customized models require more information for focal species. We focus on pest spread and ask: How much does predictive power differ between generalized and customized models? Further, we examine whether an intermediate "semi-generalized" model, combining elements of a general model with species-specific modifications, could yield predictive advantages. We compared predictive power of a generalized model applied to all forest pest species (the generalized dispersal kernel or GDK) to customized spread models for three invasive forest pests (beech bark disease [Cryptococcus fagisuga], gypsy moth [Lymantria dispar], and hemlock woolly adelgid [Adelges tsugae]), for which time-series data exist. We generated semi-generalized dispersal kernel models (SDK) through GDK correction factors based on additional species-specific information. We found that customized models were more predictive than the GDK by an average of 17% for the three species examined, although the GDK still had strong predictive ability (57% spatial variation explained). However, by combining the GDK with simple corrections into the SDK model, we attained a mean of 91% of the spatial variation explained, compared to 74% for the customized models. This is, to our knowledge, the first comparison of general and species-specific ecological spread models' predictive abilities. Our strong predictive results suggest that general models can be effectively synthesized with context-specific information for single species to respond quickly to invasions. We provided SDK forecasts to 2030 for all 63 United States pests in our data set.


Assuntos
Hemípteros , Mariposas , Animais , Florestas , Tsuga , Estados Unidos
6.
Ecol Appl ; 29(3): e01866, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30706569

RESUMO

Estimating α-diversity and species distributions provides baseline information to understand factors such as biodiversity loss and erosion of ecosystem services. Yet, species surveys typically cover a small portion of any country's landmass. Public, global databases could help, but contain biases. Thus, the magnitude of bias should be identified and ameliorated, the value of integration determined, and application to current policy issues illustrated. The ideal integrative approach should be powerful, flexible, efficient, and conceptually straightforward. We estimated distributions for >6,000 species, integrating species sightings (S) from the Global Biodiversity Information Facility (GBIF), systematic survey data (S2 ), and "bias-adjustment kernels" (BaK) using spatial and species trait databases (S2 BaK). We validated our approach using both locational and species holdout sets, and then applied our predictive model to Panama. Using sightings alone (the most common approach) discriminated relative probabilities of occurrences well (area under the curve [AUC] = 0.88), but underestimated actual probabilities by ~4,000%, while using survey data alone omitted over three-quarters of the >6,000 species. Comparatively, S2 BaK had no systematic underestimation, and substantially stronger discrimination (AUC = 0.96) and predictive power (deviance explained = 47%). Our model suggested high diversity (~200% countrywide mean) where urban development is projected to occur (the Panama Canal watershed) and also suggested this is not due to higher sampling intensity. However, portions of the Caribbean coast and eastern Panama (the Darién Gap) were even higher, both for total plant biodiversity (~250% countrywide mean), and CITES listed species. Finally, indigenous territories appeared half as diverse as other regions, based on survey observations. However, our model suggested this was largely due to site selection, and that richness in and out of indigenous territories was roughly equal. In brief, we provide arguably the best estimate of countrywide plant α-diversity and species distributions in the Neotropics, and make >6,000 species distributions available. We identify regions of overlap between development and high biodiversity, and improve interpretation of biodiversity patterns, including for policy-relevant CITES species, and locations with limited access (i.e., indigenous territories). We derive a powerful, flexible, efficient and simple estimation approach for biodiversity science.


Assuntos
Biodiversidade , Ecossistema , Região do Caribe , Panamá , Plantas
7.
Ecol Lett ; 20(4): 426-435, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28176497

RESUMO

We tested whether a general spread model could capture macroecological patterns across all damaging invasive forest pests in the United States. We showed that a common constant dispersal kernel model, simulated from the discovery date, explained 67.94% of the variation in range size across all pests, and had 68.00% locational accuracy between predicted and observed locational distributions. Further, by making dispersal a function of forest area and human population density, variation explained increased to 75.60%, with 74.30% accuracy. These results indicated that a single general dispersal kernel model was sufficient to predict the majority of variation in extent and locational distribution across pest species and that proxies of propagule pressure and habitat invasibility - well-studied predictors of establishment - should also be applied to the dispersal stage. This model provides a key element to forecast novel invaders and to extend pathway-level risk analyses to include spread.


Assuntos
Simulação por Computador , Conservação dos Recursos Naturais , Florestas , Fungos/fisiologia , Insetos/fisiologia , Espécies Introduzidas , Ácaros/fisiologia , Distribuição Animal , Animais , Modelos Biológicos , Dinâmica Populacional , Estados Unidos
8.
Commun Earth Environ ; 5(1): 310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873360

RESUMO

Cities concentrate problems that affect human well-being and biodiversity. Exploring the link between mental health and biodiversity can inform more holistic public health and urban planning. Here we examined associations between bird and tree species diversity estimates from eBird community science datasets and national forest inventories with self-rated mental health metrics from the Canadian Community Health Survey. We linked data across 36 Canadian Metropolitan Areas from 2007-2022 at a postal code level. After controlling for covariates, we found that bird and tree species diversity were significantly positively related to good self-reported mental health. Living in a postal code with bird diversity one standard deviation higher than the mean increased reporting of good mental health by 6.64%. Postal codes with tree species richness one standard deviation more than the mean increased reporting of good mental health by 5.36%. Our results suggest that supporting healthy urban ecosystems may also benefit human well-being.

9.
Sci Total Environ ; 912: 169281, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101642

RESUMO

Invasive non-native species are a growing burden to economies worldwide. While domesticated animals (i.e. livestock, beasts of burden or pets) have enabled our ways of life and provide sustenance for countless individuals, they may cause substantial impacts when they escape or are released (i.e. become feral) and then become invasive with impacts. We used the InvaCost database to evaluate monetary impacts from species in the Domestic Animal Diversity Information System database. We found a total cost of $141.95 billion from only 18 invasive feral species. Invasive feral livestock incurred the highest costs at $90.03 billion, with pets contributing $50.93 billion and beasts of burden having much lower costs at $0.98 billion. Agriculture was the most affected sector at $80.79 billion, followed by the Environment ($43.44 billion), and Authorities-Stakeholders sectors ($5.52 billion). Damage costs comprised the majority ($124.94 billion), with management and mixed damage-management costs making up the rest ($9.62 and $7.38 billion, respectively). These economic impacts were observed globally, where Oceania, North America and Europe were the most impacted regions. Islands recorded a higher economic burden than continental areas, with livestock species dominating costs more on islands than mainlands compared to other feral species. The costs of invasive feral animals were on average twice higher than those of wild species. The management of invasive feral populations requires higher investment, updated regulations, and comprehensive risk assessments. These are especially complex when considering the potential conflicts arising from interventions with species that have close ties to humans. Effective communication to raise public awareness of the impacts of feral populations and appropriate legislation to prevent or control such invasive feral populations will substantially contribute to minimizing their socioeconomic and environmental impacts.


Assuntos
Animais Selvagens , Espécies Introduzidas , Humanos , Animais , Agricultura , Animais Domésticos , América do Norte
10.
PLoS One ; 18(4): e0283973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37099499

RESUMO

The Indian Ocean represents a significant data gap in the evaluation of sea turtle population status and trends. Like many small island states, the Republic of Maldives has limited baseline data, capacity and resources to gather information on sea turtle abundance, distribution and trends to evaluate their conservation status. We applied a Robust Design methodology to convert opportunistic photographic identification records into estimates of abundance and key demographic parameters for hawksbill sea turtles (Eretmochelys imbricata) and green sea turtles (Chelonia mydas) in the Republic of Maldives. Photographs were collected ad hoc by marine biologists and citizen scientists around the country from May 2016 to November 2019. Across 10 sites in four atolls, we identified 325 unique hawksbill turtles and 291 unique green turtles-where most were juveniles. Our analyses suggest that, even when controlling for survey effort and detectability dynamics, the populations of both species are stable and/or increasing in the short term at many reefs in the Maldives and the country appears to provide excellent habitat for recruiting juvenile turtles of both species. Our results represent one of the first empirical estimations of sea turtle population trends that account for detectability. This approach provides a cost-effective way for small island states in the Global South to evaluate threats to wildlife while accounting for biases inherent in community science data.


Assuntos
Tartarugas , Animais , Maldivas , Oceano Índico
11.
Sci Adv ; 9(25): eabq4207, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343095

RESUMO

Ecological systems are quintessentially complex systems. Understanding and being able to predict phenomena typical of complex systems is, therefore, critical to progress in ecology and conservation amidst escalating global environmental change. However, myriad definitions of complexity and excessive reliance on conventional scientific approaches hamper conceptual advances and synthesis. Ecological complexity may be better understood by following the solid theoretical basis of complex system science (CSS). We review features of ecological systems described within CSS and conduct bibliometric and text mining analyses to characterize articles that refer to ecological complexity. Our analyses demonstrate that the study of complexity in ecology is a highly heterogeneous, global endeavor that is only weakly related to CSS. Current research trends are typically organized around basic theory, scaling, and macroecology. We leverage our review and the generalities identified in our analyses to suggest a more coherent and cohesive way forward in the study of complexity in ecology.


Assuntos
Ecologia , Ecossistema , Ecologia/métodos , Mineração de Dados , Bibliometria , Animais , Atividades Humanas
12.
Sci Rep ; 13(1): 8945, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268662

RESUMO

The high ecological impacts of many invasive alien trees have been well documented. However, to date, we lacked synthesis of their economic impacts, hampering management actions. Here, we summarize the cost records of invasive trees to (I) identify invasive trees with cost information and their geographic locations, (II) investigate the types of costs recorded and sectors impacted by invasive trees and (III) analyze the relationships between categories of uses of invasive trees and the invasion costs attributed to these uses. We found reliable cost records only for 72 invasive trees, accumulating a reported total cost of $19.2 billion between 1960 and 2020. Agriculture was the sector with the highest cost records due to invasive trees. Most costs were incurred as resource damages and losses ($3.5 billion). Close attention to the ornamental sector is important for reducing the economic impact of invasive trees, since most invasive trees with cost records were introduced for that use. Despite massive reported costs of invasive trees, there remain large knowledge gaps on most invasive trees, sectors, and geographic scales, indicating that the real cost is severely underestimated. This highlights the need for further concerted and widely-distributed research efforts regarding the economic impact of invasive trees.


Assuntos
Meio Ambiente , Árvores , Agricultura , Espécies Introduzidas
13.
Sci Rep ; 12(1): 10829, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902706

RESUMO

Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread, having caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled at 17.0 billion US$ between 1986 and 2020, divided split into 6.3 billion US$ for amphibians, 10.4 billion US$ for reptiles and 334 million US$ for mixed classes. However, these costs were associated predominantly with only two species (brown tree snake Boiga irregularis and American bullfrog Lithobates catesbeianus), with 10.3 and 6.0 billion US$ in costs, respectively. Costs for the remaining 19 reported species were relatively minor (< 0.6 billion US$), and they were entirely unavailable for over 94% of known invasive herpetofauna worldwide. Also, costs were positively correlated with research effort, suggesting research biases towards well-known taxa. So far, costs have been dominated by predictions and extrapolations (79%), and thus empirical observations for impact were relatively scarce. The activity sector most affected by amphibians was authorities-stakeholders through management (> 99%), while for reptiles, impacts were reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Pacific Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time but peaked between 2011 and 2015 for amphibians and 2006 to 2010 for reptiles. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna.


Assuntos
Anfíbios , Ecossistema , Répteis , Animais , Humanos , Espécies Introduzidas , América do Norte
14.
Sci Total Environ ; 817: 152948, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032533

RESUMO

Invasive alien species (IAS) are a growing global ecological problem. Reports on the socio-economic impacts of biological invasions are accumulating, but our understanding of temporal trends across regions and taxa remains scarce. Accordingly, we investigated temporal trends in the economic cost of IAS and cost-reporting literature using the InvaCost database and meta-regression modelling approaches. Overall, we found that both the cost reporting literature and monetary costs increased significantly over time at the global scale, but costs increased faster than reports. Differences in global trends suggest that cost literature has accumulated most rapidly in North America and Oceania, while monetary costs have exhibited the steepest increase in Oceania, followed by Europe, Africa and North America. Moreover, the costs for certain taxonomic groups were more prominent than others and the distribution also differed spatially, reflecting a potential lack of generality in cost-causing taxa and disparate patterns of cost reporting. With regard to global trends within the Animalia and Plantae kingdoms, costs for flatworms, mammals, flowering and vascular plants significantly increased. Our results highlight significantly increasing research interest and monetary impacts of biological invasions globally, but uncover key regional differences driven by variability in reporting of costs across countries and taxa. Our findings also suggest that regions which previously had lower research effort (e.g., Africa) exhibit rapidly increasing costs, comparable to regions historically at the forefront of invasion research. While these increases may be driven by specific countries within regions, we illustrate that even after accounting for research effort (cost reporting), costs of biological invasions are rising.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Europa (Continente) , América do Norte , Plantas
15.
Sci Total Environ ; 819: 153404, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35148893

RESUMO

The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs - 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1-2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management - particularly pre-invasion - and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Invertebrados , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA