Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(5): 1513-1525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251425

RESUMO

The DNA damage response avoids mutations into dividing cells. Here, we analysed the role of photoreceptors on the restriction of root growth imposed by genotoxic agents and its relationship with cell viability and performance of meristems. Comparison of root growth of Arabidopsis WT, phyA-211, phyB-9, and phyA-211phyB-9 double mutants unveiled a critical role for phytochrome A (PhyA) in protecting roots from genotoxic stress, regeneration and cell replenishment in the meristematic zone. PhyA was located on primary root tips, where it influences genes related to the repair of DNA, including ERF115 and RAD51. Interestingly, phyA-211 mutants treated with zeocin failed to induce the expression of the repressor of cell cycle MYB3R3, which correlated with expression of the mitotic cyclin CycB1, suggesting that PhyA is required for safeguarding the DNA integrity during cell division. Moreover, the growth of the primary roots of PhyA downstream component HY5 and root growth analyses in darkness suggest that cell viability and DNA damage responses within root meristems may act independently from light and photomorphogenesis. These data support novel roles for PhyA as a key player for stem cell niche maintenance and DNA damage responses, which are critical for proper root growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , DNA/metabolismo , Reparo do DNA/genética , Luz , Meristema/genética , Meristema/metabolismo , Mutação , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo
2.
Plant Sci ; 314: 111117, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895546

RESUMO

The MEDIATOR complex influences the transcription of genes acting as a RNA pol II co-activator. The MED16 subunit has been related to low phosphate sensing in roots, but how it influences the overall plant growth and root development remains unknown. In this study, we compared the root growth of Arabidopsis wild-type (WT), and two alleles of MED16 (med16-2 and med16-3) mutants in vitro. The MED16 loss-of-function seedlings showed longer primary roots with higher cell division capacity of meristematic cells, and an increased number of lateral roots than WT plants, which correlated with improved biomass accumulation. The auxin response reported by DR5:GFP fluorescence was comparable in WT and med16-2 root tips, but strongly decreased in pericycle cells and lateral root primordia in the mutants. Dose-response analysis supplementing indole-3-acetic acid (IAA), or the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA), indicated normal responses to auxin in the med16-2 and med16-3 mutants regarding primary root growth and lateral root formation, but strong resistance to NPA in primary roots, which could be correlated with cell division and elongation. Expression analysis of pPIN1::PIN1::GFP, pPIN3::PIN3::GFP, pIAA14:GUS, pIAA28:GUS and 35S:MED16-GFP suggests that MED16 could mediate auxin signaling. Our data imply that an altered auxin response in the med16 mutants is not necessarily deleterious for overall growth and developmental patterning and may instead directly regulate basic cellular programmes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Biomassa , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Mutação
3.
Protoplasma ; 257(2): 573-582, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31823020

RESUMO

ALTERED MERISTEM PROGRAM 1 (AMP1) encodes a putative glutamate-carboxypeptidase important for plant growth and development. In this study, by comparing the growth of Arabidopsis wild-type, amp1-10 and amp1-13 mutants, and AMP1-GFP/OX2- and AMP1-GFP/OX7-overexpressing seedlings in vitro and in soil, we uncover the role of AMP1 in biomass accumulation in Arabidopsis. AMP1-overexpressing plants had longer primary roots and increased lateral root number and density than the WT, which correlated with improved root, shoot, and total biomass accumulation. AMP1-overexpressing seedlings had an enhanced rate of growth of primary roots, and accordingly, sucrose supplementation restored primary root growth and promoted lateral root formation in amp1 mutants, while reproductive development, fruit size, and seed content were also modified according to disruption or overexpression of AMP1. We further found that AMP1 plays an important role for stomatal development, guard cell functioning, and carbon assimilation. These data help explain the pleiotropic functions of AMP1 in both root and shoot system development, possibly acting in a sugar-dependent manner for regulation of root architecture, biomass accumulation, and seed production.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Meristema/metabolismo , Fotossíntese/genética , Arabidopsis/genética , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA