Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 293(33): 12877-12893, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29853648

RESUMO

Amyloid deposits of WT apolipoprotein A-I (apoA-I), the main protein component of high-density lipoprotein, accumulate in atherosclerotic plaques where they may contribute to coronary artery disease by increasing plaque burden and instability. Using CD analysis, solid-state NMR spectroscopy, and transmission EM, we report here a surprising cooperative effect of heparin and the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), a known inhibitor and modulator of amyloid formation, on apoA-I fibrils. We found that heparin, a proxy for glycosaminoglycan (GAG) polysaccharides that co-localize ubiquitously with amyloid in vivo, accelerates the rate of apoA-I formation from monomeric protein and associates with insoluble fibrils. Mature, insoluble apoA-I fibrils bound EGCG (KD = 30 ± 3 µm; Bmax = 40 ± 3 µm), but EGCG did not alter the kinetics of apoA-I amyloid assembly from monomer in the presence or absence of heparin. EGCG selectively increased the mobility of specific backbone and side-chain sites of apoA-I fibrils formed in the absence of heparin, but the fibrils largely retained their original morphology and remained insoluble. By contrast, fibrils formed in the presence of heparin were mobilized extensively by the addition of equimolar EGCG, and the fibrils were remodeled into soluble 20-nm-diameter oligomers with a largely α-helical structure that were nontoxic to human umbilical artery endothelial cells. These results argue for a protective effect of EGCG on apoA-I amyloid associated with atherosclerosis and suggest that EGCG-induced remodeling of amyloid may be tightly regulated by GAGs and other amyloid co-factors in vivo, depending on EGCG bioavailability.


Assuntos
Amiloide/química , Apolipoproteína A-I/química , Catequina/análogos & derivados , Heparina/química , Catequina/química , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína
2.
Phys Chem Chem Phys ; 20(27): 18207-18215, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29915824

RESUMO

Fluorine is often incorporated into the aromatic moieties of synthetic bioactive molecules such as pharmaceuticals and disease diagnostics in order to alter their physicochemical properties. Fluorine substitution may increase a molecule's lipophilicity, thereby enabling its diffusion across cell membranes to enhance bioavailability or to exert a direct physiological effect from within the lipid bilayer. Understanding the structure, dynamics and orientation of fluoroaromatic molecules in lipid bilayers can provide useful insight into the effect of fluorine on their mode of action, and their interactions with membrane-embedded targets or efflux proteins. Here we demonstrate that NMR measurements of 19F chemical shift anisotropy combined with 1H-19F dipolar coupling measurements together report on the average orientation of a lipophilic fluoroaromatic molecule, 4-(6-fluorobenzo[d]thiazol-2-yl)aniline (FBTA), rapidly rotating within a lipid bilayer. The 19F chemical shift tensor orientation in the molecular frame was calculated by density functional theory and corroborated by 1H-19F PISEMA NMR. It was then possible to analyse the line shapes of proton-coupled and proton-decoupled 19F spectra of FBTA in chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) bilayers to restrict the average axis of molecular reorientation of FBTA in the bilayer to a limited range orientations. This approach, which exploits the high sensitivity and gyromagnetic ratios of 19F and 1H, will be useful for comparing the membrane properties of related bioactive fluoroaromatic compounds.


Assuntos
Compostos de Anilina/química , Bicamadas Lipídicas/química , Compostos Orgânicos/química , Tiazóis/química , Anisotropia , Difusão , Dimiristoilfosfatidilcolina/química , Flúor , Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular
3.
Biochemistry ; 56(11): 1632-1644, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-27992182

RESUMO

Peptides derived from apolipoprotein A-I (apoA-I), the main component of high-density lipoprotein (HDL), constitute the main component of amyloid deposits that colocalize with atherosclerotic plaques. Here we investigate the molecular details of full-length, lipid-deprived apoA-I after assembly into insoluble aggregates under physiologically relevant conditions known to induce aggregation in vitro. Unmodified apoA-I is shown to remain soluble at pH 7 for at least 3 days, retaining its native α-helical-rich structure. Upon acidification to pH 4, apoA-I rapidly assembles into insoluble nonfibrillar aggregates lacking the characteristic cross-ß features of amyloid. In the presence of heparin, the rate and thioflavin T responsiveness of the aggregates formed at pH 4 increase and short amyloid-like fibrils are observed, which give rise to amyloid-characteristic X-ray reflections at 4.7 and 10 Å. Solid-state nuclear magnetic resonance (SSNMR) and synchrotron radiation circular dichroism spectroscopy of fibrils formed in the presence of heparin show they retain some α-helical characteristics together with new ß-sheet structures. Interestingly, SSNMR indicates a similar molecular structure of aggregates formed in the absence of heparin at pH 6 after oxidation of the three methionine residues, although their morphology is rather different from that of the heparin-derived fibrils. We propose a model for apoA-I aggregation in which perturbations of a four-helix bundle-like structure, induced by interactions of heparin or methionine oxidation, cause the partially helical N-terminal residues to disengage from the remaining, intact helices, thereby allowing self-assembly via ß-strand associations.


Assuntos
Proteínas Amiloidogênicas/química , Apolipoproteína A-I/química , Heparina/química , Metionina/química , Agregados Proteicos , Proteínas Amiloidogênicas/metabolismo , Proteínas Amiloidogênicas/ultraestrutura , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/ultraestrutura , Benzotiazóis , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Heparina/metabolismo , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Metionina/metabolismo , Oxirredução , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espectrometria de Fluorescência , Tiazóis/química
4.
J Am Chem Soc ; 138(27): 8328-31, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27281497

RESUMO

The amyloid plaques associated with Alzheimer's disease (AD) comprise fibrillar amyloid-ß (Aß) peptides as well as non-protein factors including glycosaminoglycan (GAG) polysaccharides. GAGs affect the kinetics and pathway of Aß self-assembly and can impede fibril clearance; thus, they may be accessory molecules in AD. Here we report the first high-resolution details of GAG-Aß fibril interactions from the perspective of the saccharide. Binding analysis indicated that the GAG proxy heparin has a remarkably high affinity for Aß fibrils with 3-fold cross-sectional symmetry (3Q). Chemical synthesis of a uniformly (13)C-labeled octasaccharide heparin analogue enabled magic-angle spinning solid-state NMR of the GAG bound to 3Q fibrils, and measurements of dynamics revealed a tight complex in which all saccharide residues are restrained without undergoing substantial conformational changes. Intramolecular (13)C-(15)N dipolar dephasing is consistent with close (<5 Å) contact between GAG anomeric position(s) and one or more histidine residues in the fibrils. These data provide a detailed model for the interaction between 3Q-seeded Aß40 fibrils and a major non-protein component of AD plaques, and they reveal that GAG-amyloid interactions display a range of affinities that critically depend on the precise details of the fibril architecture.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Glicosaminoglicanos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
5.
Biochemistry ; 52(50): 8984-92, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24279288

RESUMO

Amyloid deposits in vivo are complex mixtures composed of protein fibrils and nonfibrillar components, including polysaccharides of the glycosaminoglycan (GAG) class. It has been widely documented that GAGs influence the initiation and progress of self-assembly by several disease-associated amyloidogenic proteins and peptides in vitro. Here we investigated whether the GAG heparin can serve as a cofactor to induce amyloid-like fibril formation in a peptide predicted to have a weak propensity to aggregate and not associated with amyloid disorders. We selected the 23-residue peptide PLB(1-23), which corresponds to the acetylated cytoplasmic domain of the phospholamban transmembrane protein. PLB(1-23) remains unfolded in aqueous solution for >24 h and does not bind thioflavin T over this time period, in agreement with computer predictions that the peptide has a very low intrinsic amyloidogenicity. In the presence of low-molecular mass (5 kDa) heparin, which binds PLB(1-23) with micromolar affinity, the peptide undergoes spontaneous and rapid assembly into amyloid-like fibrils, the effect being more pronounced at pH 5.5 than at pH 7.4. At the lower pH, peptide aggregation is accompanied by a transition to a ß-sheet rich structure. These results are consistent with the polyanionic heparin serving as a scaffold to enhance aggregation by aligning the peptide molecules in the correct orientation and with the appropriate periodicity. PLB(1-23) is toxic to cells when added in isolation, and promotion of fibril formation by heparin can reduce the toxicity of this peptide, consistent with the notion that amyloid-like fibrils represent a benign end stage of fibrillization. This work provides insight into the role that heparin and other glycosaminoglycans may play in amyloid formation and provides therapeutic avenues targeting the reduction of cytotoxicity of species along the amyloid formation pathway.


Assuntos
Amiloide/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Peptídeos/metabolismo , Amiloide/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicosaminoglicanos/química , Heparina/química , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Peptídeos/química , Peptídeos/farmacologia , Relação Estrutura-Atividade , Propriedades de Superfície , Titulometria
6.
Biochim Biophys Acta ; 1808(4): 1021-31, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21130070

RESUMO

Phospholemman (PLM) is a single-span transmembrane protein belonging to the FXYD family of proteins. PLM (or FXYD1) regulates the Na,K-ATPase (NKA) ion pump by altering its affinity for K(+) and Na(+) and by reducing its hydrolytic activity. Structural studies of PLM in anionic detergent micelles have suggested that the cytoplasmic domain, which alone can regulate NKA, forms a partial helix which is stabilized by interactions with the charged membrane surface. This work examines the membrane affinity and regulatory function of a 35-amino acid peptide (PLM(38-72)) representing the PLM cytoplasmic domain. Isothermal titration calorimetry and solid-state NMR measurements confirm that PLM(38-72) associates strongly with highly anionic phospholipid membranes, but the association is weakened substantially when the negative surface charge is reduced to a more physiologically relevant environment. Membrane interactions are also weakened when the peptide is phosphorylated at S68, one of the substrate sites for protein kinases. PLM(38-72) also lowers the maximal velocity of ATP hydrolysis (V(max)) by NKA, and phosphorylation of the peptide at S68 gives rise to a partial recovery of V(max). These results suggest that the PLM cytoplasmic domain populates NKA-associated and membrane-associated states in dynamic equilibrium and that phosphorylation may alter the position of the equilibrium. Interestingly, peptides representing the cytoplasmic domains of two other FXYD proteins, Mat-8 (FXYD3) and CHIF (FXYD4), have little or no interaction with highly anionic phospholipid membranes and have no effect on NKA function. This suggests that the functional and physical properties of PLM are not conserved across the entire FXYD family.


Assuntos
Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Calorimetria , Membrana Celular/química , Membrana Celular/metabolismo , Dicroísmo Circular , Humanos , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosfoproteínas/química , Fosforilação , Potássio/metabolismo , Ligação Proteica , Serina/metabolismo , Sódio/metabolismo
7.
Biochim Biophys Acta ; 1788(2): 559-66, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19059204

RESUMO

The 52-amino acid transmembrane protein phospholamban (PLB) regulates calcium cycling in cardiac cells by forming a complex with the sarco(endo)plasmic reticulum calcium ATPase (SERCA) and reversibly diminishing the rate of calcium uptake by the sarcoplasmic reticulum. The N-terminal cytoplasmic domain of PLB interacts with the cytoplasmic domain of SERCA, but, in the absence of the enzyme, can also associate with the surface of anionic phospholipid membranes. This work investigates whether the cytoplasmic domain of PLB can also associate with membrane surfaces in the presence of SERCA, and whether such interactions could influence the regulation of the enzyme. It is shown using solid-state NMR and isothermal titration calorimetry (ITC) that an N-terminally acetylated peptide representing the first 23 N-terminal amino acids of PLB (PLB1-23) interacts with membranes composed of zwitterionic phosphatidylcholine (PC) and anionic phosphatidylglycerol (PG) lipids in the absence and presence of SERCA. Functional measurements of SERCA in sarcoplasmic reticulum (SR) vesicles, planar SR membranes and reconstituted into PC/PG membranes indicate that PLB1-23 lowers the maximal rate of ATP hydrolysis by acting at the cytoplasmic face of the enzyme. A small, but statistically significant, reduction in the inhibitory effect of the peptide is observed for SERCA reconstituted into PC/PG membranes compared to SERCA in membranes of PC alone. It is suggested that interactions between the cytoplasmic domain of PLB and negatively charged phospholipids might play a role in moderating the regulation of SERCA, with implications for cardiac muscle contractility.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Citoplasma/metabolismo , Miocárdio/metabolismo , Fosfolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Lipossomas Unilamelares/metabolismo , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Calorimetria , Citoplasma/química , Espectroscopia de Ressonância Magnética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosfolipídeos/química , Ligação Proteica , Coelhos , Lipossomas Unilamelares/química
8.
Biochem Biophys Res Commun ; 401(3): 370-5, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20851101

RESUMO

The association between the cardiac transmembrane proteins phospholamban and sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) regulates the active transport of Ca(2+) into the sarcoplasmic reticulum (SR) lumen and controls the contraction and relaxation of the heart. Heart failure (HF) and cardiac hypertrophy have been linked to defects in Ca(2+) uptake by the cardiac SR and stimulation of calcium transport by modulation of the PLB-SERCA interaction is a potential therapy. This work is part of an effort to identify compounds that destabilise the PLB-SERCA interaction in well-defined membrane environments. It is shown that heparin-derived oligosaccharides (HDOs) interact with the cytoplasmic domain of PLB and consequently stimulate SERCA activity. These results indicate that the cytoplasmic domain of PLB is functionally important and could be a valid target for compounds with drug-like properties.


Assuntos
Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Heparina/farmacologia , Oligossacarídeos/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citoplasma/metabolismo , Heparina/química , Oligossacarídeos/química , Estrutura Terciária de Proteína/efeitos dos fármacos , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
9.
ACS Chem Neurosci ; 11(14): 2104-2116, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32520518

RESUMO

Potential drug treatments for Alzheimer's disease (AD) may be found by identifying compounds that block the assembly of the microtubule-associated protein tau into neurofibrillar tangles associated with neuron destabilization and cell death. Here, a small library of structurally diverse compounds was screened in vitro for the ability to inhibit tau aggregation, using high-throughput synchrotron radiation circular dichroism as a novel tool to monitor the structural changes in the protein as it assembles into filaments. The catecholamine epinephrine was found to be the most effective tau aggregation inhibitor of all 88 screened compounds. Subsequently, we tested chemically similar phenolamine drugs from the ß-adrenergic receptor agonist class, using conventional circular dichroism spectroscopy, thioflavin T fluorescence, and transmission electron microscopy. Two compounds, salbutamol and dobutamine, used widely in the treatment of respiratory and cardiovascular disease, impede the aggregation of tau in vitro. Dobutamine reduces both the rate and yield of tau filament formation over 24 h; however, it has little effect on the structural transition of tau into ß-sheet structures over 24 h. Salbutamol also reduces the yield and rate of filament formation and additionally inhibits tau's structural change into ß-sheet-rich aggregates. Salbutamol has a good safety profile and a half-life that facilitates permeation through the blood-brain barrier and could represent an expediated approach to developing AD therapeutics. These results provide the motivation for the in vivo evaluation of pre-existing ß-adrenergic receptor agonists as a potential therapy for AD through the reduction of tau deposition.


Assuntos
Albuterol , Doença de Alzheimer , Agonistas Adrenérgicos beta , Albuterol/farmacologia , Dicroísmo Circular , Humanos , Receptores Adrenérgicos , Proteínas tau
10.
Mol Membr Biol ; 25(6-7): 518-27, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18949627

RESUMO

Associations between the 140 amino acid protein alpha-synuclein (asyn) and presynaptic vesicles may play a role in maintaining synaptic plasticity and neurotransmitter release. These physiological processes may involve disruption and fusion of vesicles, arising from interactions between specific regions of asyn, including the highly basic N-terminal domain, and the surface of vesicles. This work investigates whether asyn affects the integrity of model unilamellar vesicles of varying size and phospholipid composition, by monitoring paramagnetic Mn(2+)-induced broadening of peaks in the (31)P nuclear magnetic resonance spectrum of the lipid head groups. It is shown that asyn increases the permeability to Mn(2+) of both large (200 nm diameter) and small (50 nm diameter) vesicles composed of zwitterionic phosphatidylcholine and anionic phosphatidylglycerol at protein/lipid molar ratios as low as 1:2000. Further experiments on peptides corresponding to sequences in the N-terminal (10-48), C-terminal (120-140) and central hydrophobic (71-82) regions of asyn suggest that single regions of the protein are capable of permeabilizing the vesicles to varying extents. Electron micrographs of the vesicles after addition of asyn indicate that the enhanced permeability is coupled to large-scale disruption or fusion of the vesicles. These results indicate that asyn is able to permeabilize phospholipid vesicles at low relative concentrations, dependent upon the properties of the vesicles. This could have implications for asyn playing a role in vesicle synthesis, maintenance and fusion within synapses.


Assuntos
Lipossomos/metabolismo , alfa-Sinucleína/farmacologia , Lipossomos/química , Espectroscopia de Ressonância Magnética , Manganês , Fusão de Membrana , Microscopia Eletrônica , Modelos Biológicos , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Permeabilidade/efeitos dos fármacos , Fosfatidilcolinas , Fosfatidilgliceróis , Fosfolipídeos , Isótopos de Fósforo , Sinapses/efeitos dos fármacos , alfa-Sinucleína/química
11.
Chem Commun (Camb) ; 55(88): 13287-13290, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31626247

RESUMO

NMR measurements of 19F chemical shift anisotropy and 1H-19F dipolar couplings provide unprecedented information on the molecular orientations of two fluorine-containing statin drugs within the heterogeneous environment of reconstituted high-density lipoprotein (rHDL) nanoparticles, a drug delivery system under clinical investigation.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/química , Lipoproteínas/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Flúor , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
J Phys Chem Lett ; 9(22): 6611-6615, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30354142

RESUMO

With amyloid diseases poised to become a major health burden in countries with aging populations, diagnostic molecules that aid the detection of amyloid in vitro and in vivo are of considerable clinical value. Understanding how such ligands recognize their amyloid targets would help to design diagnostics that target specific amyloid types associated with a particular disease, but methods to provide comprehensive information are underdeveloped. Here, solid-state NMR is used to determine the molecular orientation of the amyloid diagnostic 1-fluoro-2,5-bis[( E)-3-carboxy-4-hydroxystyryl]-benzene (FSB) when bound to fibrils of the Alzheimer's amyloid-ß polypeptide aligned on a planar substrate. The 19F NMR spectrum of the aligned complex reveals that FSB is oriented approximately parallel with the fibril long axis and bridges four hydrogen-bonded ß-sheets. In addition to providing atomic details to aid the design of amyloid-specific diagnostics, this approach will also illuminate the molecular mechanisms of accessory molecules in amyloid disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Corantes Fluorescentes/metabolismo , Fragmentos de Peptídeos/metabolismo , Estirenos/metabolismo , Isótopos de Carbono , Fluorescência , Corantes Fluorescentes/química , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Isótopos de Nitrogênio , Ligação Proteica , Estirenos/química
13.
J Mol Biol ; 429(16): 2449-2462, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28697887

RESUMO

The Aß peptide forms extracellular plaques associated with Alzheimer's disease. In addition to protein fibrils, amyloid plaques also contain non-proteinaceous components, including glycosaminoglycans (GAGs). We have shown previously that the GAG low-molecular-weight heparin (LMWH) binds to Aß40 fibrils with a three-fold-symmetric (3Q) morphology with higher affinity than Aß40 fibrils in alternative structures, Aß42 fibrils, or amyloid fibrils formed from other sequences. Solid-state NMR analysis of the GAG-3Q fibril complex revealed an interaction site at the corners of the 3Q fibril structure, but the origin of the binding specificity remained obscure. Here, using a library of short heparin polysaccharides modified at specific sites, we show that the N-sulfate or 6-O-sulfate of glucosamine, but not the 2-O-sulfate of iduronate within heparin is required for 3Q binding, indicating selectivity in the interactions of the GAG with the fibril that extends beyond general electrostatic complementarity. By creating 3Q fibrils containing point substitutions in the amino acid sequence, we also show that charged residues at the fibril three-fold apices provide the majority of the binding free energy, while charged residues elsewhere are less critical for binding. The results indicate, therefore, that LMWH binding to 3Q fibrils requires a precise molecular complementarity of the sulfate moieties on the GAG and charged residues displayed on the fibril surface. Differences in GAG binding to fibrils with distinct sequence and/or structure may thus contribute to the diverse etiology and progression of amyloid diseases.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Heparina de Baixo Peso Molecular/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/genética , Análise Mutacional de DNA , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/genética , Ligação Proteica
15.
Sci Rep ; 6: 29155, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377465

RESUMO

Cardiotonic steroids (CTS) are clinically important drugs for the treatment of heart failure owing to their potent inhibition of cardiac Na(+), K(+)-ATPase (NKA). Bufadienolides constitute one of the two major classes of CTS, but little is known about how they interact with NKA. We report a remarkable stereoselectivity of NKA inhibition by native 3ß-hydroxy bufalin over the 3α-isomer, yet replacing the 3ß-hydroxy group with larger polar groups in the same configuration enhances inhibitory potency. Binding of the two (13)C-labelled glycosyl diastereomers to NKA were studied by solid-state NMR (SSNMR), which revealed interactions of the glucose group of the 3ß- derivative with the inhibitory site, but much weaker interactions of the 3α- derivative with the enzyme. Molecular docking simulations suggest that the polar 3ß-groups are closer to the hydrophilic amino acid residues in the entrance of the ligand-binding pocket than those with α-configuration. These first insights into the stereoselective inhibition of NKA by bufadienolides highlight the important role of the hydrophilic moieties at C3 for binding, and may explain why only 3ß-hydroxylated bufadienolides are present as a toxic chemical defence in toad venom.


Assuntos
Bufanolídeos/química , Bufanolídeos/farmacologia , Glicosídeos Cardíacos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Bufanolídeos/síntese química , Bufonidae , Isótopos de Carbono , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glicosídeos Cardíacos/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Simulação de Acoplamento Molecular , ATPase Trocadora de Sódio-Potássio/metabolismo , Estereoisomerismo , Temperatura
17.
PLoS One ; 9(9): e106746, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25225809

RESUMO

Phospholamban (PLB) is a pentameric protein that plays an important role in regulating cardiac contractility via a reversible inhibitory association with the sarcoplasmic reticulum Ca2+ATPase (SERCA), the enzyme responsible for maintaining correct calcium homeostasis. Here we study the functional and biophysical characteristics of a PLB mutant associated with human dilated cardiomyopathy (DCM), with a deletion of arginine at position 14 (PLBR14Δ). In agreement with recent findings, we find that PLBR14Δ has a reduced inhibitory effect on SERCA compared to wild type PLB (PLBWT) when reconstituted into lipid membranes. The mutation also leads to a large reduction in the protein kinase A-catalysed phosphorylation of Ser-16 in the cytoplasmic domain of PLBR14Δ. Measurements on SERCA co-reconstituted with an equimolar mixture of PLBWT and PLBR14Δ (representing the lethal heterozygous state associated with DCM) indicates that the loss-of-function mutation has a dominant effect on PLBWT functionality and phosphorylation capacity, suggesting that mixed PLBWT/PLBR14Δ pentamers are formed that have characteristics typical of the mutant protein. Structural and biophysical analysis of PLBR14Δ indicates that the mutation perturbs slightly the helical structure of the PLB cytoplasmic domain and reduces its affinity for the phospholipid bilayer surface, thereby altering the orientation of the cytoplasmic domain relative to the wild-type protein. These results indicate that the structure and function consequences of the R14 deletion have profound effects on the regulation of SERCA which may contribute to the aetiology of DCM.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Mutação , Proteínas de Ligação ao Cálcio/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Termodinâmica
18.
J Biol Chem ; 282(36): 26603-13, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17616528

RESUMO

The transmembrane protein sarcolipin regulates calcium storage in the sarcoplasmic reticulum of skeletal and cardiac muscle cells by modulating the activity of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs). The highly conserved C-terminal region ((27)RSYQY-COOH) of sarcolipin helps to target the protein to the sarcoplasmic reticulum membrane and may also participate in the regulatory interaction between sarcolipin and SERCA. Here we used solid-state NMR measurements of local protein dynamics to illuminate the direct interaction between the Tyr(29) and Tyr(31) side groups of sarcolipin and skeletal muscle Ca(2+)-ATPase (SERCA1a) embedded in dioleoylphosphatidylcholine bilayers. Further solid-state NMR experiments together with functional measurements on SERCA1a in the presence of NAc-RSYQY, a peptide representing the conserved region of sarcolipin, suggest that the peptide binds to the same site as the parent protein at the luminal face of SERCA1a, where it reduces V(max) for calcium transport and inhibits ATP hydrolysis with an IC(50) of approximately 200 microM. The inhibitory effect of NAc-RSYQY is remarkably sequence-specific, with the native aromatic residues being essential for optimal inhibitory activity. This combination of physical and functional measurements highlights the importance of aromatic and polar residues in the C-terminal region of sarcolipin for regulating calcium cycling and muscle contractility.


Assuntos
Bicamadas Lipídicas/química , Proteínas Musculares/química , Peptídeos/química , Proteolipídeos/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Tirosina/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação/fisiologia , Cálcio/química , Cálcio/metabolismo , Ativação Enzimática/fisiologia , Hidrólise , Transporte de Íons/fisiologia , Bicamadas Lipídicas/metabolismo , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/metabolismo , Fosfatidilcolinas/química , Ligação Proteica/fisiologia , Proteolipídeos/metabolismo , Coelhos , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tirosina/metabolismo
19.
Mol Membr Biol ; 22(4): 353-61, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16154906

RESUMO

Phospholamban (PLB) is a small transmembrane protein that regulates calcium transport across the sarcoplasmic reticulum (SR) of cardiac cells via a reversible inhibitory interaction with Ca2+-ATPase. In this work solid-state NMR methods have been used to investigate the dynamics of the inhibitory association between PLB and Ca2+-ATPase. Skeletal muscle Ca2+-ATPase was incorporated into phosphatidylcholine membranes together with a ten-fold excess of a null-cysteine mutant of PLB labelled with 13C at Leu-44 in the transmembrane domain ([alpha-13C-L44]AAA-PLB). In these membranes the PLB variant was found to partially inhibit Ca2+-ATPase by reducing the affinity of the enzyme for calcium. Cross-polarization magic angle spinning (CP-MAS) 13C NMR spectra of the membranes exhibited a signature peak from [alpha-13C-L44]AAA-PLB at 56 ppm. Changes in the intensity of the peak were observed at different temperatures, which was diagnostic of direct interaction between [alpha-13C-L44]AAA-PLB and Ca2+-ATPase. Measurements of dipolar couplings between the 13C label and neighbouring protons were analysed to show that the mean residency time for the association of AAA-PLB with Ca2+-ATPase was on the order of 2.5 ms at temperatures between 0 degrees C and 30 degrees C. This new NMR approach will be useful for examining how the association of the two proteins is affected by physiological stimuli such as kinases and the elevation of calcium concentration.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Animais , Cinética , Espectroscopia de Ressonância Magnética , Membranas Artificiais , Modelos Biológicos , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
20.
Biochemistry ; 44(51): 17016-26, 2005 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-16363815

RESUMO

Phospholamban (PLB) and phospholemman (PLM, also called FXYD1) are small transmembrane proteins that interact with P-type ATPases and regulate ion transport in cardiac cells and other tissues. This work has investigated the hypothesis that the cytoplasmic domains of PLB and PLM, when not interacting with their regulatory targets, are stabilized through associations with the surface of the phospholipid membrane. Peptides representing the 35 C-terminal cytoplasmic residues of PLM (PLM(37-72)), the 23 N-terminal cytoplasmic residues of PLB (PLB(1-23)), and the same sequence phosphorylated at Ser-16 (P-PLB(1-23)) were synthesized to examine their interactions with model membranes composed of zwitterionic phosphatidylcholine (PC) lipids alone or in admixture with anionic phosphatidylglycerol (PG) lipids. Wide-line 2H NMR spectra of PC/PG membranes, with PC deuterated in the choline moiety, indicated that all three peptides interacted with the membrane surface and perturbed the orientation of the choline headgroups. Fluorescence and 31P magic-angle spinning (MAS) NMR measurements indicated that PLB(1-23) and P-PLB(1-23) had a higher affinity for PC/PG membranes, which carry an overall negative surface charge, than for PC membranes, which have no net surface charge. The 31P MAS NMR spectra of the PC/PG membranes in the presence of PLM(37-72), PLB(1-23), and P-PLB(1-23) indicated that all three peptides induced clustering of the lipids into PC-enriched and PG-enriched regions. These findings support the theory that the cytoplasmic domains of PLB and PLM are stabilized by interacting with lipid headgroups at the membrane surface, and it is speculated that such interactions may modulate the functional properties of biological membranes.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Membranas Artificiais , Fosfolipídeos/metabolismo , Fosfoproteínas/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/química , Membrana Celular/metabolismo , Dicroísmo Circular , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Fosfolipídeos/química , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA