Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 23(1): 23-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937933

RESUMO

Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates1-6. Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c+ natural killer (NK) cells and CD4+ T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38+PD1+CD4+ T effector (Teff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127+ granulocytes and CD38+CD8+ tissue-resident memory T cells (TRM). SARS-CoV-2-specific CD8+ T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Nasofaringe/imunologia , Nariz/citologia , Mucosa Respiratória/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/patologia , Granulócitos/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células T de Memória/imunologia , Monócitos/imunologia , Nasofaringe/citologia , Nasofaringe/virologia , Neutrófilos/imunologia , Nariz/imunologia , Nariz/virologia , Estudos Prospectivos , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia
2.
J Infect Dis ; 227(5): 651-662, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402141

RESUMO

BACKGROUND: The COVIH study is a prospective coronavirus disease 2019 (COVID-19) vaccination study in 1154 people with HIV (PWH), of whom 14% showed reduced antibody levels after primary vaccination. We evaluated whether an additional vaccination boosts immune responses in these hyporesponders. METHODS: The primary end point was the increase in antibodies 28 days after additional mRNA-1273 vaccination. Secondary end points included neutralizing antibodies, S-specific T-cell and B-cell responses, and reactogenicity. RESULTS: Of the 66 participants, 40 previously received 2 doses ChAdOx1-S, 22 received 2 doses BNT162b2, and 4 received a single dose Ad26.COV2.S. The median age was 63 years (interquartile range [IQR], 60-66), 86% were male, and median CD4+ T-cell count was 650/µL (IQR, 423-941). The mean S1-specific antibody level increased from 35 binding antibody units (BAU)/mL (95% confidence interval [CI], 24-46) to 4317 BAU/mL (95% CI, 3275-5360) (P < .0001). Of all participants, 97% showed an adequate response and the 45 antibody-negative participants all seroconverted. A significant increase in the proportion of PWH with ancestral S-specific CD4+ T cells (P = .04) and S-specific B cells (P = .02) was observed. CONCLUSIONS: An additional mRNA-1273 vaccination induced a robust serological response in 97% of PWH with a hyporesponse after primary vaccination. Clinical Trials Registration. EUCTR2021-001054-57-N.


Assuntos
COVID-19 , Infecções por HIV , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , ChAdOx1 nCoV-19 , Vacinas contra COVID-19 , Estudos Prospectivos , SARS-CoV-2 , Vacinação , Idoso
3.
Eur J Immunol ; 52(11): 1819-1828, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36189878

RESUMO

Anti-viral T-cell responses are usually directed against a limited set of antigens, but often contain many T cells expressing different T-cell receptors (TCRs). Identical TCRs found within virus-specific T-cell populations in different individuals are known as public TCRs, but also TCRs highly-similar to these public TCRs, with only minor variations in amino acids on specific positions in the Complementary Determining Regions (CDRs), are frequently found. However, the degree of freedom at these positions was not clear. In this study, we used the HLA-A*02:01-restricted EBV-LMP2FLY -specific public TCR as model and modified the highly-variable position 5 of the CDR3ß sequence with all 20 amino acids. Our results demonstrate that amino acids at this particular position in the CDR3ß region of this TCR are completely inter-changeable, without loss of TCR function. We show that the inability to find certain variants in individuals is explained by their lower recombination probability rather than by steric hindrance.


Assuntos
Aminoácidos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta
4.
J Infect Dis ; 226(5): 833-842, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32808978

RESUMO

BACKGROUND: Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs) is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV antigens (LMP1/2). Patients who are HLA-A*01:01 positive could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS: HLA-A*01:01-restricted EBV-LMP2-specific T cells were isolated using peptide major histocompatibility complex (pMHC) tetramers. Functionality was assessed by production of interferon gamma (IFN-γ) and cytotoxicity when stimulated with EBV-LMP2-expressing cell lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCRs of primary T cells (∆TCR) using CRISPR-Cas9 technology. RESULTS: EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene transfer in primary T cells resulted in specific pMHC tetramer binding and reactivity against EBV-LMP2-expressing cell lines. The mean fluorescence intensity of pMHC-tetramer binding was increased 1.5-2 fold when the endogenous TCRs of CD8+ T cells was knocked out. CD8+/∆TCR T cells modified to express EBV-LMP2-specific TCRs showed IFN-γ secretion and cytotoxicity toward EBV-LMP2-expressing malignant cell lines. CONCLUSIONS: We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene therapy to treat EBV-associated latency type II/III malignancies.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos HLA-A , Herpesvirus Humano 4 , Receptores de Antígenos de Linfócitos T , Proteínas da Matriz Viral , Humanos , Interferon gama , Receptores de Antígenos de Linfócitos T/genética , Proteínas da Matriz Viral/imunologia
5.
J Immunol ; 200(6): 2199-2208, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29427418

RESUMO

Alemtuzumab (ALM) is used for T cell depletion in the context of allogeneic hematopoietic stem cell transplantation (alloSCT) to prevent acute graft-versus-host disease and graft rejection. Following ALM-based T cell-depleted alloSCT, relatively rapid recovery of circulating T cells has been described, including T cells that lack membrane expression of the GPI-anchored ALM target Ag CD52. We show, in a cohort of 89 human recipients of an ALM-based T cell-depleted alloSCT graft, that early lymphocyte reconstitution always coincided with the presence of large populations of T cells lacking CD52 membrane expression. In contrast, loss of CD52 expression was not overt within B cells or NK cells. We show that loss of CD52 expression from the T cell membrane resulted from loss of GPI anchor expression caused by a highly polyclonal mutational landscape in the PIGA gene. This polyclonal mutational landscape in the PIGA gene was also found in CD52- T cells present at a low frequency in peripheral blood of healthy donors. Finally, we demonstrate that the GPI-/CD52- T cell populations that arise after ALM-based T cell-depleted alloSCT contain functional T cells directed against multiple viral targets that can play an important role in immune protection early after ALM-based T cell-depleted transplantation.


Assuntos
Alemtuzumab/farmacologia , Antígeno CD52/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mutação/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Adulto , Linfócitos B/imunologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Células Matadoras Naturais/imunologia , Depleção Linfocítica/métodos , Taxa de Mutação
6.
Clin Microbiol Infect ; 30(7): 930-936, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552793

RESUMO

OBJECTIVES: The aim of this study was to assess the safety and immunogenicity of a dose-sparing fractional intradermal (ID) booster strategy with the mRNA-1273 COVID-19 vaccine. METHODS: COVID-19 naive adults aged 18-30 years were recruited from a previous study on primary vaccination regimens that compared 20 µg ID vaccinations with 100 µg intramuscular (IM) vaccinations with mRNA-1273 as the primary vaccination series. Participants previously immunized with ID regimens were randomly assigned (1:1) to receive a fractional ID booster dose (20 µg) or the standard-of-care intramuscular (IM) booster dose (50 µg) of the mRNA-1273 vaccine, 6 months after completing their primary series (ID-ID and ID-IM group, respectively). Participants that had received a full dose IM regimen as the primary series, received the IM standard-of-care booster dose (IM-IM group). In addition, COVID-19 naive individuals aged 18-40 years who had received an IM mRNA vaccine as the primary series were recruited from the general population to receive a fractional ID booster dose (IM-ID group). Immunogenicity was assessed using IgG anti-spike antibody responses and neutralizing capacity against SARS-CoV-2. Cellular immune responses were measured in a sub-group. Safety and tolerability were monitored. RESULTS: In January 2022, 129 participants were included in the study. Fractional ID boosting was safe and well tolerated, with fewer systemic adverse events compared with IM boosting. At day 28 post-booster, anti-spike S1 IgG geometric mean concentrations were 9106 (95% CI, 7150-11 597) binding antibody units (BAU)/mL in the IM-IM group and 4357 (3003-6322) BAU/mL; 6629 (4913-8946) BAU/mL; and 5264 (4032-6873) BAU/mL in the ID-IM, ID-ID, and IM-ID groups, respectively. DISCUSSION: Intradermal boosting provides robust immune responses and is a viable dose-sparing strategy for mRNA COVID-19 vaccines. The favourable side-effect profile supports its potential to reduce vaccine hesitancy. Fractional dosing strategies should be considered early in the clinical development of future mRNA vaccines to enhance vaccine availability and pandemic preparedness.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Imunogenicidade da Vacina , SARS-CoV-2 , Humanos , Adulto , Imunização Secundária/métodos , Injeções Intradérmicas , Masculino , Feminino , COVID-19/prevenção & controle , COVID-19/imunologia , Adulto Jovem , Anticorpos Antivirais/sangue , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Anticorpos Neutralizantes/sangue , Adolescente , Injeções Intramusculares , Vacinação/métodos
7.
NPJ Vaccines ; 9(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167735

RESUMO

Fractional dosing can be a cost-effective vaccination strategy to accelerate individual and herd immunity in a pandemic. We assessed the immunogenicity and safety of primary intradermal (ID) vaccination, with a 1/5th dose compared with the standard intramuscular (IM) dose of mRNA-1273 in SARS-CoV-2 naïve persons. We conducted an open-label, non-inferiority, randomized controlled trial in the Netherlands between June and December 2021. One hundred and fifty healthy and SARS-CoV-2 naïve participants, aged 18-30 years, were randomized (1:1:1) to receive either two doses of 20 µg mRNA-1273 ID with a standard needle (SN) or the Bella-mu® needle (BM), or two doses of 100 µg IM, 28 days apart. The primary outcome was non-inferiority in seroconversion rates at day 43 (D43), defined as a neutralizing antibody concentration threshold of 465 IU/mL, the lowest response in the IM group. The non-inferiority margin was set at -15%. Neutralizing antibody concentrations at D43 were 1789 (95% CI: 1488-2150) in the IM and 1263 (951-1676) and 1295 (1020-1645) in the ID-SN and ID-BM groups, respectively. The absolute difference in seroconversion proportion between fractional and standard-dose groups was -13.95% (-24.31 to -3.60) for the ID-SN and -13.04% (-22.78 to -3.31) for the ID-BM group and exceeded the predefined non-inferiority margin. Although ID vaccination with 1/5th dose of mRNA-1273 did not meet the predefined non-inferior criteria, the neutralizing antibody concentrations in these groups are far above the proposed proxy for protection against severe disease (100 IU/mL), justifying this strategy in times of vaccine scarcity to accelerate mass protection against severe disease.

8.
J Clin Invest ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954588

RESUMO

Cytomegalovirus (CMV) is one of the most common and relevant opportunistic pathogens in immunocompromised individuals such as kidney transplant recipients (KTRs). The exact mechanisms underlying the disability of cytotoxic T cells to provide sufficient protection against CMV in immunosuppressed individuals have not been identified yet. Here, we performed in-depth metabolic profiling of CMV-specific CD8+ T cells in immunocompromised patients and show the development of metabolic dysregulation at the transcriptional, protein, and functional level of CMV-specific CD8+ T cells in KTRs with non-controlled CMV infection. These dysregulations comprise impaired glycolysis and increased mitochondrial stress, which is associated with an intensified expression of the nicotinamide adenine dinucleotide nucleotidase (NADase) CD38. Inhibiting NADase activity of CD38 reinvigorated the metabolism and improved cytokine production of CMV-specific CD8+ T cells. These findings were corroborated in a mouse model of CMV infection under conditions of immunosuppression. Thus, dysregulated metabolic states of CD8+ T cells could be targeted by inhibiting CD38 to reverse hypo-responsiveness in individuals who fail to control chronic viral infection.

9.
Commun Biol ; 6(1): 1095, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898698

RESUMO

Bacterial capsular polysaccharides are important vaccine immunogens. However, the study of polysaccharide-specific immune responses has been hindered by technical restrictions. Here, we developed and validated a high-throughput method to analyse antigen-specific B cells using combinatorial staining with fluorescently-labelled capsular polysaccharide multimers. Concurrent staining of 25 cellular markers further enables the in-depth characterization of polysaccharide-specific cells. We used this assay to simultaneously analyse 14 Streptococcus pneumoniae or 5 Streptococcus agalactiae serotype-specific B cell populations. The phenotype of polysaccharide-specific B cells was associated with serotype specificity, vaccination history and donor population. For example, we observed a link between non-class switched (IgM+) memory B cells and vaccine-inefficient S. pneumoniae serotypes 1 and 3. Moreover, B cells had increased activation in donors from South Africa, which has high-incidence of S. agalactiae invasive disease, compared to Dutch donors. This assay allows for the characterization of heterogeneity in B cell immunity that may underlie immunization efficacy.


Assuntos
Imunização , Vacinas , Citometria de Fluxo , Polissacarídeos Bacterianos , Imunidade
10.
Front Immunol ; 13: 851868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401538

RESUMO

Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 epitopes of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.


Assuntos
Infecções por Vírus Epstein-Barr , Citomegalovirus , Herpesvirus Humano 4 , Humanos , Receptores de Antígenos de Linfócitos T , Linfócitos T
11.
Front Immunol ; 13: 831822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251023

RESUMO

In the context of HLA-DP-mismatched allogeneic stem cell transplantation, mismatched HLA-DP alleles can provoke profound allo-HLA-DP-specific immune responses from the donor T-cell repertoire leading to graft-versus-leukemia effect and/or graft-versus-host disease in the patient. The magnitude of allo-HLA-DP-specific immune responses has been shown to depend on the specific HLA-DP disparity between donor and patient and the immunogenicity of the mismatched HLA-DP allele(s). HLA-DP peptidome clustering (DPC) was developed to classify the HLA-DP molecules based on similarities and differences in their peptide-binding motifs. To investigate a possible categorization of HLA-DP molecules based on overlap of presented peptides, we identified and compared the peptidomes of the thirteen most frequently expressed HLA-DP molecules. Our categorization based on shared peptides was in line with the DPC classification. We found that the HLA-DP molecules within the previously defined groups DPC-1 or DPC-3 shared the largest numbers of presented peptides. However, the HLA-DP molecules in DPC-2 segregated into two subgroups based on the overlap in presented peptides. Besides overlap in presented peptides within the DPC groups, a substantial number of peptides was also found to be shared between HLA-DP molecules from different DPC groups, especially for groups DPC-1 and -2. The functional relevance of these findings was illustrated by demonstration of cross-reactivity of allo-HLA-DP-reactive T-cell clones not only against HLA-DP molecules within one DPC group, but also across different DPC groups. The promiscuity of peptides presented in various HLA-DP molecules and the cross-reactivity against different HLA-DP molecules demonstrate that these molecules cannot be strictly categorized in immunogenicity groups.


Assuntos
Doença Enxerto-Hospedeiro , Antígenos HLA-DP , Efeito Enxerto vs Leucemia , Humanos , Peptídeos , Linfócitos T
12.
Front Immunol ; 12: 630440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854504

RESUMO

T-cell products derived from third-party donors are clinically applied, but harbor the risk of off-target toxicity via induction of allo-HLA cross-reactivity directed against mismatched alleles. We used third-party donor-derived virus-specific T cells as model to investigate whether virus-specificity, HLA restriction and/or HLA background can predict the risk of allo-HLA cross-reactivity. Virus-specific CD8pos T cells were isolated from HLA-A*01:01/B*08:01 or HLA-A*02:01/B*07:02 positive donors. Allo-HLA cross-reactivity was tested using an EBV-LCL panel covering 116 allogeneic HLA molecules and confirmed using K562 cells retrovirally transduced with single HLA-class-I alleles of interest. HLA-B*08:01-restricted T cells showed the highest frequency and diversity of allo-HLA cross-reactivity, regardless of virus-specificity, which was skewed toward multiple recurrent allogeneic HLA-B molecules. Thymic selection for other HLA-B alleles significantly influenced the level of allo-HLA cross-reactivity mediated by HLA-B*08:01-restricted T cells. These results suggest that the degree and specificity of allo-HLA cross-reactivity by T cells follow rules. The risk of off-target toxicity after infusion of incompletely matched third-party donor-derived virus-specific T cells may be reduced by selection of T cells with a specific HLA restriction and background.


Assuntos
Antígenos HLA/imunologia , Linfócitos T/imunologia , Vírus/imunologia , Alelos , Reações Cruzadas , Citomegalovirus/imunologia , Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 4/imunologia , Teste de Histocompatibilidade , Humanos , Imunoterapia Adotiva , Células K562 , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA