Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 677(Pt A): 885-894, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39126807

RESUMO

Zinc metal anodes encounter significant challenges, including dendrite growth, hydrogen evolution, and corrosion, all of which impede the rate capability and longevity of aqueous zinc-ion batteries (AZIBs). To effectively tackle these issues, we introduced Tween-80 into the traditional ZnSO4 electrolyte as an additive. Tween-80 possesses electronegative oxygen atoms that enable it to adsorb onto the zinc (Zn) anode surface, facilitating the directional deposition of Zn metal along the (002) orientation. The hydroxyl and ether groups within Tween-80 can displace some of the coordinated water molecules in the Zn2+ inner solvation shell. This disruption of the hydrogen bond network regulates the solvation structure of Zn2+ ions and suppresses the possibility of hydrogen evolution. Moreover, the long hydrocarbon chain present in Tween-80 exhibits excellent hydrophobic properties, aiding in the resistance against corrosion of the Zn anode by water molecules and reducing hydrogen evolution. Consequently, a symmetric cell equipped with the Tween-80 additive can cycle stably for over 4000 h at 1 mA cm-2 and 1 mA h cm-2. When paired with the V2O5 cathode, the full cell demonstrates a high-capacity retention rate exceeding 80 % over 1000 cycles at a current density of 2 A g-1. This study underscores the advantages of utilizing non-ionic surfactants for achieving high-performance aqueous zinc-ion batteries.

2.
J Colloid Interface Sci ; 664: 607-616, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490036

RESUMO

Expanded graphite (EG) stands out as a promising material for the negative electrode in potassium-ion batteries. However, its full potential is hindered by the limited diffusion pathway and storage sites for potassium ions, restricting the improvement of its electrochemical performance. To overcome this challenge, defect engineering emerges as a highly effective strategy to enhance the adsorption and reaction kinetics of potassium ions on electrode materials. This study delves into the specific effectiveness of defects in facilitating potassium storage, exploring the impact of defect-rich structures on dynamic processes. Employing ball milling, we introduce surface defects in EG, uncovering unique effects on its electrochemical behavior. These defects exhibit a remarkable ability to adsorb a significant quantity of potassium ions, facilitating the subsequent intercalation of potassium ions into the graphite structure. Consequently, this process leads to a higher potassium voltage. Furthermore, the generation of a diluted stage compound is more pronounced under high voltage conditions, promoting the progression of multiple stage reactions. Consequently, the EG sample post-ball milling demonstrates a notable capacity of 286.2 mAh g-1 at a current density of 25 mA g-1, showcasing an outstanding rate capability that surpasses that of pristine EG. This research not only highlights the efficacy of defect engineering in carbon materials but also provides unique insights into the specific manifestations of defects on dynamic processes, contributing to the advancement of potassium-ion battery technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA