Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Physiol Genomics ; 56(2): 167-178, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047311

RESUMO

Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease, it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF and stimulated using light. RNA sequencing of the left ventricular myocardium identified 294 differentially expressed genes (false discovery rate < 0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z score of ≥2/≤-2, including EIF-2, IL-2, integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signaling, inflammation, and hypertrophy. IPA further predicted that the identified differentially expressed genes were the targets of 50 upstream regulators, including transcription factors (e.g., MYC and NRF1) and microRNAs (e.g., miR-335-3p and miR-338-3p). These data demonstrate that the vagus nerve has a major impact on the myocardial expression of genes involved in the regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.NEW & NOTEWORTHY This experimental animal study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity. Vagal stimulation induced significant transcriptional changes in the heart involving the pathways controlling autonomic signaling, inflammation, fibrosis, and hypertrophy. This study provides the first direct evidence that myocardial gene expression is modulated by the activity of the autonomic nervous system.


Assuntos
MicroRNAs , Estimulação do Nervo Vago , Ratos , Animais , Frequência Cardíaca , Coração , MicroRNAs/genética , Hipertrofia , Inflamação , Fibrose
2.
Physiol Genomics ; 56(2): 167-178, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-39071113

RESUMO

Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF, and stimulated using light. RNA sequencing of left ventricular myocardium identified 294 differentially expressed genes (DEGs, false discovery rate <0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z-score of ≥2/≤-2, including EIF-2, IL-2, Integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signalling, inflammation, and hypertrophy. IPA further predicted that the identified DEGs were the targets of 50 upstream regulators, including transcription factors (e.g., MYC, NRF1) and microRNAs (e.g., miR-335-3p, miR-338-3p). These data demonstrate that the vagus nerve has a major impact on myocardial expression of genes involved in regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.


Assuntos
Estimulação do Nervo Vago , Nervo Vago , Animais , Estimulação do Nervo Vago/métodos , Ratos , Nervo Vago/fisiologia , Nervo Vago/metabolismo , Coração/fisiologia , Masculino , Miocárdio/metabolismo , Ratos Sprague-Dawley , Optogenética/métodos , Regulação da Expressão Gênica , Transcrição Gênica , Perfilação da Expressão Gênica
3.
Nat Mater ; 21(1): 110-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34518665

RESUMO

Experimental in vitro models that capture pathophysiological characteristics of human tumours are essential for basic and translational cancer biology. Here, we describe a fully synthetic hydrogel extracellular matrix designed to elicit key phenotypic traits of the pancreatic environment in culture. To enable the growth of normal and cancerous pancreatic organoids from genetically engineered murine models and human patients, essential adhesive cues were empirically defined and replicated in the hydrogel scaffold, revealing a functional role of laminin-integrin α3/α6 signalling in establishment and survival of pancreatic organoids. Altered tissue stiffness-a hallmark of pancreatic cancer-was recapitulated in culture by adjusting the hydrogel properties to engage mechano-sensing pathways and alter organoid growth. Pancreatic stromal cells were readily incorporated into the hydrogels and replicated phenotypic traits characteristic of the tumour environment in vivo. This model therefore recapitulates a pathologically remodelled tumour microenvironment for studies of normal and pancreatic cancer cells in vitro.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/metabolismo , Animais , Matriz Extracelular , Humanos , Hidrogéis/metabolismo , Camundongos , Organoides , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
4.
Cell Mol Biol Lett ; 28(1): 56, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460977

RESUMO

BACKGROUND: Focal adhesions (FAs) are integrin-containing, multi-protein structures that link intracellular actin to the extracellular matrix and trigger multiple signaling pathways that control cell proliferation, differentiation, survival and motility. Microtubules (MTs) are stabilized in the vicinity of FAs through interaction with the components of the cortical microtubule stabilizing complex (CMSC). KANK (KN motif and ankyrin repeat domains) family proteins within the CMSC, KANK1 or KANK2, bind talin within FAs and thus mediate actin-MT crosstalk. We previously identified in MDA-MB-435S cells, which preferentially use integrin αVß5 for adhesion, KANK2 as a key molecule enabling the actin-MT crosstalk. KANK2 knockdown also resulted in increased sensitivity to MT poisons, paclitaxel (PTX) and vincristine and reduced migration. Here, we aimed to analyze whether KANK1 has a similar role and to distinguish which talin isoform binds KANK2. METHODS: The cell model consisted of human melanoma cell line MDA-MB-435S and stably transfected clone with decreased expression of integrin αV (3αV). For transient knockdown of talin1, talin2, KANK1 or KANK2 we used gene-specific siRNAs transfection. Using previously standardized protocol we isolated integrin adhesion complexes. SDS-PAGE and Western blot was used for protein expression analysis. The immunofluorescence analysis and live cell imaging was done using confocal microscopy. Cell migration was analyzed with Transwell Cell Culture Inserts. Statistical analysis using GraphPad Software consisted of either one-way analysis of variance (ANOVA), unpaired Student's t-test or two-way ANOVA analysis. RESULTS: We show that KANK1 is not a part of the CMSC associated with integrin αVß5 FAs and its knockdown did not affect the velocity of MT growth or cell sensitivity to PTX. The talin2 knockdown mimicked KANK2 knockdown i.e. led to the perturbation of actin-MT crosstalk, which is indicated by the increased velocity of MT growth and increased sensitivity to PTX and also reduced migration. CONCLUSION: We conclude that KANK2 functionally interacts with talin2 and that the mechanism of increased sensitivity to PTX involves changes in microtubule dynamics. These data elucidate a cell-type-specific role of talin2 and KANK2 isoforms and we propose that talin2 and KANK2 are therefore potential therapeutic targets for improved cancer therapy.


Assuntos
Melanoma , Talina , Humanos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/genética , Integrinas/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Isoformas de Proteínas/metabolismo , Talina/genética , Talina/química , Talina/metabolismo , Linhagem Celular Tumoral/metabolismo
5.
J Biol Chem ; 297(1): 100837, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118235

RESUMO

Talin (TLN1) is a mechanosensitive component of adhesion complexes that directly couples integrins to the actin cytoskeleton. In response to force, talin undergoes switch-like behavior of its multiple rod domains that modulate interactions with its binding partners. Cyclin-dependent kinase-1 (CDK1) is a key regulator of the cell cycle, exerting its effects through synchronized phosphorylation of a large number of protein targets. CDK1 activity maintains adhesion during interphase, and its inhibition is a prerequisite for the tightly choreographed changes in cell shape and adhesion that are required for successful mitosis. Using a combination of biochemical, structural, and cell biological approaches, we demonstrate a direct interaction between talin and CDK1 that occurs at sites of integrin-mediated adhesion. Mutagenesis demonstrated that CDK1 contains a functional talin-binding LD motif, and the binding site within talin was pinpointed to helical bundle R8. Talin also contains a consensus CDK1 phosphorylation motif centered on S1589, a site shown to be phosphorylated by CDK1 in vitro. A phosphomimetic mutant of this site within talin lowered the binding affinity of the cytoskeletal adaptor KANK and weakened the response of this region to force as measured by single molecule stretching, potentially altering downstream mechanotransduction pathways. The direct binding of the master cell cycle regulator CDK1 to the primary integrin effector talin represents a coupling of cell proliferation and cell adhesion machineries and thereby indicates a mechanism by which the microenvironment can control cell division in multicellular organisms.


Assuntos
Proteína Quinase CDC2/metabolismo , Mecanotransdução Celular , Talina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína Quinase CDC2/química , Adesão Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Modelos Biológicos , Fosforilação , Ligação Proteica , Domínios Proteicos , Talina/química
6.
J Cell Sci ; 129(22): 4159-4163, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799358

RESUMO

The adhesion nexus is the site at which integrin receptors bridge intracellular cytoskeletal and extracellular matrix networks. The connection between integrins and the cytoskeleton is mediated by a dynamic integrin adhesion complex (IAC), the components of which transduce chemical and mechanical signals to control a multitude of cellular functions. In this Cell Science at a Glance article and the accompanying poster, we integrate the consensus adhesome, a set of 60 proteins that have been most commonly identified in isolated IAC proteomes, with the literature-curated adhesome, a theoretical network that has been assembled through scholarly analysis of proteins that localise to IACs. The resulting IAC network, which comprises four broad signalling and actin-bridging axes, provides a platform for future studies of the regulation and function of the adhesion nexus in health and disease.


Assuntos
Integrinas/metabolismo , Proteoma/metabolismo , Animais , Adesão Celular , Doença , Humanos
7.
Exp Cell Res ; 343(1): 7-13, 2016 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-26515553

RESUMO

Cell and tissue stiffness have been known to contribute to both developmental and pathological signalling for some time, but the underlying mechanisms remain elusive. Integrins and their associated adhesion signalling complexes (IACs), which form a nexus between the cell cytoskeleton and the extracellular matrix, act as a key force sensing and transducing unit in cells. Accordingly, there has been much interest in obtaining a systems-level understanding of IAC composition. Proteomic approaches have revealed the complexity of IACs and identified a large number of components that are regulated by cytoskeletal force. Here we review the function of the consensus adhesome, an assembly of core IAC proteins that emerged from a meta-analysis of multiple proteomic datasets, in the context of mechanosensing. As IAC components have been linked to a variety of diseases involved with rigidity sensing, the field is now in a position to define the mechanosensing function of individual IAC proteins and elucidate their mechanisms of action.


Assuntos
Adesões Focais/metabolismo , Integrinas/metabolismo , Modelos Biológicos , Complexos de Coordenação , Humanos , Proteômica , Estresse Mecânico
8.
J Am Soc Nephrol ; 26(12): 3021-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25896609

RESUMO

Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-ß. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease.


Assuntos
Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Nefropatias/genética , Glomérulos Renais/metabolismo , Albuminúria/genética , Albuminúria/metabolismo , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Matriz Extracelular/ultraestrutura , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Predisposição Genética para Doença , Membrana Basal Glomerular/ultraestrutura , Nefropatias/metabolismo , Receptores X do Fígado , Masculino , Metaloproteinases da Matriz/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrinas , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Nucleares Órfãos/metabolismo , RNA/análise , Fatores Sexuais , Transdução de Sinais , Tenascina/genética , Tenascina/metabolismo
9.
J Cell Sci ; 126(Pt 18): 4121-35, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23843620

RESUMO

Cell migration makes a fundamental contribution to both normal physiology and disease pathogenesis. Integrin engagement with extracellular ligands spatially controls, via the cyclical activation and deactivation of the small GTPase Rac1, the dynamic membrane protrusion and cytoskeletal reorganization events that are required for directional migration. Although the pathways that control integrin-mediated Rac1 activation are reasonably well defined, the mechanisms that are responsible for switching off activity are poorly understood. Here, proteomic analysis of activated integrin-associated complexes suggests filamin-A and IQ-motif-containing GTPase-activating protein 1 (IQGAP1) as candidates that link ß1 integrin to Rac1. siRNA-mediated knockdown of either filamin-A or IQGAP1 induced high, dysregulated Rac1 activity during cell spreading on fibronectin. Using immunoprecipitation and immunocytochemistry, filamin-A and IQGAP1 were shown to be part of a complex that is recruited to active ß1 integrin. Mass spectrometric analysis of individual filamin-A, IQGAP1 and Rac1 pull-downs and biochemical analysis, identified RacGAP1 as a novel IQGAP1 binding partner. Further immunoprecipitation and immunocytochemistry analyses demonstrated that RacGAP1 is recruited to IQGAP1 and active ß1 integrin, and that suppression of RacGAP1 expression triggered elevated Rac1 activity during spreading on fibronectin. Consistent with these findings, reduced expression of filamin-A, IQGAP1 or RacGAP1 triggered unconstrained membrane protrusion and disrupted directional cell migration on fibrillar extracellular matrices. These findings suggest a model whereby integrin engagement, followed by filamin-A, IQGAP1 and RacGAP1 recruitment, deactivates Rac1 to constrain its activity spatially and thereby coordinate directional cell migration.


Assuntos
Integrina beta1/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Movimento Celular , Filaminas , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteômica , Transdução de Sinais , Transfecção , Células Tumorais Cultivadas , Proteínas rac1 de Ligação ao GTP/genética , Proteínas Ativadoras de ras GTPase/genética
10.
J Am Soc Nephrol ; 25(5): 939-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24436468

RESUMO

The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Glomérulos Renais/metabolismo , Proteoma/química , Adulto , Colágeno Tipo VI/química , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/isolamento & purificação , Ontologia Genética , Humanos , Glomérulos Renais/química , Glomérulos Renais/citologia , Lipocalinas/química , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Proteoma/genética
11.
J Am Soc Nephrol ; 25(5): 953-66, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24436469

RESUMO

The glomerular basement membrane (GBM) is a specialized extracellular matrix (ECM) compartment within the glomerulus that contains tissue-restricted isoforms of collagen IV and laminin. It is integral to the capillary wall and therefore, functionally linked to glomerular filtration. Although the composition of the GBM has been investigated with global and candidate-based approaches, the relative contributions of glomerular cell types to the production of ECM are not well understood. To characterize specific cellular contributions to the GBM, we used mass spectrometry-based proteomics to analyze ECM isolated from podocytes and glomerular endothelial cells in vitro. These analyses identified cell type-specific differences in ECM composition, indicating distinct contributions to glomerular ECM assembly. Coculture of podocytes and endothelial cells resulted in an altered composition and organization of ECM compared with monoculture ECMs, and electron microscopy revealed basement membrane-like ECM deposition between cocultured cells, suggesting the involvement of cell-cell cross-talk in the production of glomerular ECM. Notably, compared with monoculture ECM proteomes, the coculture ECM proteome better resembled a tissue-derived glomerular ECM dataset, indicating its relevance to GBM in vivo. Protein network analyses revealed a common core of 35 highly connected structural ECM proteins that may be important for glomerular ECM assembly. Overall, these findings show the complexity of the glomerular ECM and suggest that both ECM composition and organization are context-dependent.


Assuntos
Proteínas da Matriz Extracelular/fisiologia , Matriz Extracelular/fisiologia , Glomérulos Renais/fisiologia , Receptor Cross-Talk/fisiologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Proteínas da Matriz Extracelular/biossíntese , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/ultraestrutura , Fenótipo , Podócitos/fisiologia , Mapas de Interação de Proteínas
12.
J Biol Chem ; 288(26): 18716-31, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23658023

RESUMO

Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Embrionárias/citologia , Matriz Extracelular/metabolismo , Proteômica/métodos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Análise por Conglomerados , Meios de Cultivo Condicionados/química , Células-Tronco Embrionárias/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células Alimentadoras , Fibrilina-1 , Fibrilinas , Fibroblastos/citologia , Fibronectinas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Integrinas/metabolismo , Cariotipagem , Camundongos , Proteínas dos Microfilamentos/metabolismo
13.
Front Cell Dev Biol ; 12: 1452463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149513

RESUMO

Radiotherapy of prostate cancer (PC) can lead to the acquisition of radioresistance through molecular mechanisms that involve, in part, cell adhesion-mediated signaling. To define these mechanisms, we employed a DU145 PC model to conduct a comparative mass spectrometry-based proteomic analysis of the purified integrin nexus, i.e., the cell-matrix junction where integrins bridge assembled extracellular matrix (matrisome components) to adhesion signaling complexes (adhesome components). When parental and radioresistant cells were compared, the expression of integrins was not changed, but cell radioresistance was associated with extensive matrix remodeling and changes in the complement of adhesion signaling proteins. Out of 72 proteins differentially expressed in the parental and radioresistant cells, four proteins were selected for functional validation based on their correlation with biochemical recurrence-free survival. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) and lysyl-like oxidase-like 2 (LOXL2) were upregulated, while sushi repeat-containing protein X-linked (SRPX) and laminin subunit beta 3 (LAMB3) were downregulated in radioresistant DU145 cells. Knockdown of perlecan/HSPG2 sensitized radioresistant DU145 RR cells to irradiation while the sensitivity of DU145 parental cells did not change, indicating a potential role for perlecan/HSPG2 and its associated proteins in suppressing tumor radioresistance. Validation in androgen-sensitive parental and radioresistant LNCaP cells further supported perlecan/HSPG2 as a regulator of cell radiosensitivity. These findings extend our understanding of the interplay between extracellular matrix remodeling and PC radioresistance and signpost perlecan/HSPG2 as a potential therapeutic target and biomarker for PC.

14.
Int J Exp Pathol ; 94(2): 75-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23419153

RESUMO

The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteômica , Animais , Adesão Celular , Humanos , Espectrometria de Massas , Modelos Biológicos
15.
J Thorac Oncol ; 18(10): 1362-1385, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37455012

RESUMO

INTRODUCTION: Vasculogenic mimicry (VM), the process of tumor cell transdifferentiation to endow endothelial-like characteristics supporting de novo vessel formation, is associated with poor prognosis in several tumor types, including SCLC. In genetically engineered mouse models (GEMMs) of SCLC, NOTCH, and MYC co-operate to drive a neuroendocrine (NE) to non-NE phenotypic switch, and co-operation between NE and non-NE cells is required for metastasis. Here, we define the phenotype of VM-competent cells and molecular mechanisms underpinning SCLC VM using circulating tumor cell-derived explant (CDX) models and GEMMs. METHODS: We analyzed perfusion within VM vessels and their association with NE and non-NE phenotypes using multiplex immunohistochemistry in CDX, GEMMs, and patient biopsies. We evaluated their three-dimensional structure and defined collagen-integrin interactions. RESULTS: We found that VM vessels are present in 23/25 CDX models, 2 GEMMs, and in 20 patient biopsies of SCLC. Perfused VM vessels support tumor growth and only NOTCH-active non-NE cells are VM-competent in vivo and ex vivo, expressing pseudohypoxia, blood vessel development, and extracellular matrix organization signatures. On Matrigel, VM-primed non-NE cells remodel extracellular matrix into hollow tubules in an integrin ß1-dependent process. CONCLUSIONS: We identified VM as an exemplar of functional heterogeneity and plasticity in SCLC and these findings take considerable steps toward understanding the molecular events that enable VM. These results support therapeutic co-targeting of both NE and non-NE cells to curtail SCLC progression and to improve the outcomes of patients with SCLC in the future.


Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/patologia , Neovascularização Patológica/genética , Transdiferenciação Celular , Linhagem Celular Tumoral
16.
Proteomics ; 12(13): 2107-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22623428

RESUMO

Integrin adhesion receptors mediate cell-cell and cell-extracellular matrix interactions, which control cell morphology and migration, differentiation, and tissue integrity. Integrins recruit multimolecular adhesion complexes to their cytoplasmic domains, which provide structural and mechanosensitive signaling connections between the extracellular and intracellular milieux. The different functions of specific integrin heterodimers, such as α4ß1 and α5ß1, have been attributed to distinct signal transduction mechanisms that are initiated by selective recruitment of adhesion complex components to integrin cytoplasmic tails. Here, we report the isolation of ligand-induced adhesion complexes associated with wild-type α4ß1 integrin, an activated α4ß1 variant in the absence of the α cytoplasmic domain (X4C0), and a chimeric α4ß1 variant with α5 leg and cytoplasmic domains (α4Pα5L), and the cataloguing of their proteomes by MS. Using hierarchical clustering and interaction network analyses, we detail the differential recruitment of proteins and highlight enrichment patterns of proteins to distinct adhesion complexes. We identify previously unreported components of integrin adhesion complexes and observe receptor-specific enrichment of molecules with previously reported links to cell migration and cell signaling processes. Furthermore, we demonstrate colocalization of MYO18A with active integrin in migrating cells. These datasets provide a resource for future studies of integrin receptor-specific signaling events.


Assuntos
Integrina alfa4beta1/metabolismo , Mapas de Interação de Proteínas , Subunidades Proteicas/metabolismo , Proteômica/métodos , Adesão Celular , Linhagem Celular , Humanos , Integrina alfa4beta1/análise , Integrina alfa4beta1/genética , Espectrometria de Massas , Miosinas/análise , Miosinas/metabolismo , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/análise , Molécula 1 de Adesão de Célula Vascular/metabolismo
17.
J Proteome Res ; 11(8): 4052-64, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22694338

RESUMO

Activation of hepatic stellate cells (HSCs) and subsequent uncontrolled accumulation of altered extracellular matrix (ECM) underpin liver fibrosis, a wound healing response to chronic injury, which can lead to organ failure and death. We sought to catalogue the components of fibrotic liver ECM to obtain insights into disease etiology and aid identification of new biomarkers. Cell-derived ECM was isolated from the HSC line LX-2, an in vitro model of liver fibrosis, and compared to ECM from human foreskin fibroblasts (HFFs) as a control. Mass spectrometry analyses of cell-derived ECMs identified, with ≥99% confidence, 61 structural ECM or secreted proteins (48 and 31 proteins for LX-2 and HFF, respectively). Gene ontology enrichment analysis confirmed the enrichment of ECM proteins, and hierarchical clustering coupled with protein-protein interaction network analysis revealed a subset of proteins enriched to fibrotic ECM, highlighting the existence of cell type-specific ECM niches. Thirty-six proteins were enriched to LX-2 ECM as compared to HFF ECM, of which Wnt-5a and CYR61 were validated by immunohistochemistry in human and murine fibrotic liver tissue. Future studies will determine if these and other components may play a role in the etiology of hepatic fibrosis, serve as novel disease biomarkers, or open up new avenues for drug discovery.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Matriz Extracelular/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Animais , Linhagem Celular , Análise por Conglomerados , Proteína Rica em Cisteína 61/isolamento & purificação , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteoma/isolamento & purificação , Proteômica , Proteínas Proto-Oncogênicas/isolamento & purificação , Proteínas Wnt/isolamento & purificação , Proteína Wnt-5a
18.
Matrix Biol ; 110: 16-39, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405272

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis due to its aggressive progression, late detection and lack of druggable driver mutations, which often combine to result in unsuitability for surgical intervention. Together with activating mutations of the small GTPase KRas, which are found in over 90% of PDAC tumours, a contributory factor for PDAC tumour progression is formation of a rigid extracellular matrix (ECM) and associated desmoplasia. This response leads to aberrant integrin signalling, and accelerated proliferation and invasion. To identify the integrin adhesion systems that operate in PDAC, we analysed a range of pancreatic ductal epithelial cell models using 2D, 3D and organoid culture systems. Proteomic analysis of isolated integrin receptor complexes from human pancreatic ductal epithelial (HPDE) cells predominantly identified integrin α6ß4 and hemidesmosome components, rather than classical focal adhesion components. Electron microscopy, together with immunofluorescence, confirmed the formation of hemidesmosomes by HPDE cells, both in 2D and 3D culture systems. Similar results were obtained for the human PDAC cell line, SUIT-2. Analysis of HPDE cell secreted proteins and cell-derived matrices (CDM) demonstrated that HPDE cells secrete a range of laminin subunits and form a hemidesmosome-specific, laminin 332-enriched ECM. Expression of mutant KRas (G12V) did not affect hemidesmosome composition or formation by HPDE cells. Cell-ECM contacts formed by mouse and human PDAC organoids were also assessed by electron microscopy. Organoids generated from both the PDAC KPC mouse model and human patient-derived PDAC tissue displayed features of acinar-ductal cell polarity, and hemidesmosomes were visible proximal to prominent basement membranes. Furthermore, electron microscopy identified hemidesmosomes in normal human pancreas. Depletion of integrin ß4 reduced cell proliferation in both SUIT-2 and HPDE cells, reduced the number of SUIT-2 cells in S-phase, and induced G1 cell cycle arrest, suggesting a requirement for α6ß4-mediated adhesion for cell cycle progression and growth. Taken together, these data suggest that laminin-binding adhesion mechanisms in general, and hemidesmosome-mediated adhesion in particular, may be under-appreciated in the context of PDAC. Proteomic data are available via ProteomeXchange with the identifiers PXD027803, PXD027823 and PXD027827.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Hemidesmossomos/metabolismo , Humanos , Integrina alfa6beta4/genética , Laminina/metabolismo , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
19.
Int J Biochem Cell Biol ; 131: 105903, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33309958

RESUMO

The Kank (kidney or KN motif and ankyrin repeat domain-containing) family of proteins has been described as essential for crosstalk between actin and microtubules. Kank1, 2, 3 and 4 arose by gene duplication and diversification and share conserved structural domains. KANK proteins are localised mainly to the plasma membrane in focal adhesions, indirectly affecting RhoA and Rac1 thus regulating actin cytoskeleton. In addition, Kank proteins are part of the cortical microtubule stabilisation complex regulating microtubules. Most of the data have been collected for Kank1 protein whose expression promotes apoptosis and cell-cycle arrest while Kank3 was identified as hypoxia-inducible proapoptotic target of p53. A discrepancy in Kanks role in regulation of cell migration and sensitivity to antitumour drugs has been observed in different cell models. Since expression of Kank1 and 3 correlate positively with tumour progression and patient outcome, at least in some tumour types, they are candidates for tumour suppressors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Adesões Focais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Adesões Focais/patologia , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Paclitaxel/uso terapêutico , Domínios Proteicos , Transdução de Sinais , Resultado do Tratamento , Vincristina/uso terapêutico
20.
Front Cell Dev Biol ; 9: 786758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977030

RESUMO

Integrins are heterodimeric cell surface glycoproteins used by cells to bind to the extracellular matrix (ECM) and regulate tumor cell proliferation, migration and survival. A causative relationship between integrin expression and resistance to anticancer drugs has been demonstrated in different tumors, including head and neck squamous cell carcinoma. Using a Cal27 tongue squamous cell carcinoma model, we have previously demonstrated that de novo expression of integrin αVß3 confers resistance to several anticancer drugs (cisplatin, mitomycin C and doxorubicin) through a mechanism involving downregulation of active Src, increased cell migration and invasion. In the integrin αVß3 expressing Cal27-derived cell clone 2B1, αVß5 expression was also increased, but unrelated to drug resistance. To identify the integrin adhesion complex (IAC) components that contribute to the changes in Cal27 and 2B1 cell adhesion and anticancer drug resistance, we isolated IACs from both cell lines. Mass spectrometry (MS)-based proteomics analysis indicated that both cell lines preferentially, but not exclusively, use integrin α6ß4, which is classically found in hemidesmosomes. The anticancer drug resistant cell clone 2B1 demonstrated an increased level of α6ß4 accompanied with increased deposition of a laminin-332-containing ECM. Immunofluorescence and electron microscopy demonstrated the formation of type II hemidesmosomes by both cell types. Furthermore, suppression of α6ß4 expression in both lines conferred resistance to anticancer drugs through a mechanism independent of αVß3, which implies that the cell clone 2B1 would have been even more resistant had the upregulation of α6ß4 not occurred. Taken together, our results identify a key role for α6ß4-containing type II hemidesmosomes in regulating anticancer drug sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA