Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 60(6): 1386-1399, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30847494

RESUMO

NdbA, one of the three type 2 NAD(P)H dehydrogenases (NDH-2) in Synechocystis sp. PCC 6803 (hereafter Synechocystis) was here localized to the thylakoid membrane (TM), unique for the three NDH-2s, and investigated with respect to photosynthetic and cellular redox metabolism. For this purpose, a deletion mutant (ΔndbA) and a complementation strain overexpressing NdbA (ΔndbA::ndbA) were constructed. It is demonstrated that NdbA is expressed at very low level in the wild-type (WT) Synechocystis under photoautotrophic (PA) growth whilst substantially higher expression occurs under light-activated heterotrophic growth (LAHG). The absence of NdbA resulted in non-optimal growth of Synechocystis under LAHG and concomitantly enhanced the expression of photoprotection-related flavodiiron proteins and carbon acquisition-related proteins as well as various transporters, but downregulated a few iron homeostasis-related proteins. NdbA overexpression, on the other hand, promoted photosynthetic pigmentation and functionality of photosystem I under LAHG conditions while distinct photoprotective and carbon concentrating proteins were downregulated. NdbA overexpression also exerted an effect on the expression of many signaling and gene regulation proteins. It is concluded that the amount and function of NdbA in the TM has a capacity to modulate the redox signaling of gene expression, but apparently has a major physiological role in maintaining iron homeostasis under LAHG conditions. LC-MS/MS data are available via ProteomeXchange with identifier PXD011671.


Assuntos
Proteínas de Bactérias/metabolismo , FMN Redutase/metabolismo , Synechocystis/metabolismo , Tilacoides/metabolismo , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Luz , Microscopia Eletrônica de Transmissão , Fotossíntese , Synechocystis/enzimologia , Synechocystis/crescimento & desenvolvimento , Synechocystis/ultraestrutura , Tilacoides/enzimologia , Tilacoides/ultraestrutura
2.
Plant Physiol ; 174(3): 1863-1880, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28533358

RESUMO

NAD(P)H dehydrogenases comprise type 1 (NDH-1) and type 2 (NDH-2s) enzymes. Even though the NDH-1 complex is a well-characterized protein complex in the thylakoid membrane of Synechocystis sp. PCC 6803 (hereafter Synechocystis), the exact roles of different NDH-2s remain poorly understood. To elucidate this question, we studied the function of NdbC, one of the three NDH-2s in Synechocystis, by constructing a deletion mutant (ΔndbC) for a corresponding protein and submitting the mutant to physiological and biochemical characterization as well as to comprehensive proteomics analysis. We demonstrate that the deletion of NdbC, localized to the plasma membrane, affects several metabolic pathways in Synechocystis in autotrophic growth conditions without prominent effects on photosynthesis. Foremost, the deletion of NdbC leads, directly or indirectly, to compromised sugar catabolism, to glycogen accumulation, and to distorted cell division. Deficiencies in several sugar catabolic routes were supported by severe retardation of growth of the ΔndbC mutant under light-activated heterotrophic growth conditions but not under mixotrophy. Thus, NdbC has a significant function in regulating carbon allocation between storage and the biosynthesis pathways. In addition, the deletion of NdbC increases the amount of cyclic electron transfer, possibly via the NDH-12 complex, and decreases the expression of several transporters in ambient CO2 growth conditions.


Assuntos
Carbono/metabolismo , NADPH Desidrogenase/metabolismo , Synechocystis/metabolismo , Dióxido de Carbono/farmacologia , Clorofila/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Glicogênio/metabolismo , Processos Heterotróficos , Modelos Biológicos , Oxirredução , Fenótipo , Fotossíntese/efeitos dos fármacos , Proteômica , Deleção de Sequência , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento
3.
New Phytol ; 214(1): 194-204, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27930818

RESUMO

Pyridine nucleotide transhydrogenase (PntAB) is an integral membrane protein complex participating in the regulation of NAD(P)+ :NAD(P)H redox homeostasis in various prokaryotic and eukaryotic organisms. In the present study we addressed the function and biological role of PntAB in oxygenic photosynthetic cyanobacteria capable of both autotrophic and heterotrophic growth, with support from structural three-dimensional (3D)-modeling. The pntA gene encoding the α subunit of heteromultimeric PntAB in Synechocystis sp. PCC 6803 was inactivated, followed by phenotypic and biophysical characterization of the ΔpntA mutant under autotrophic and mixotrophic conditions. Disruption of pntA resulted in phenotypic growth defects observed under low light intensities in the presence of glucose, whereas under autotrophic conditions the mutant did not differ from the wild-type strain. Biophysical characterization and protein-level analysis of the ΔpntA mutant revealed that the phenotypic defects were accompanied by significant malfunction and damage of the photosynthetic machinery. Our observations link the activity of PntAB in Synechocystis directly to mixotrophic growth, implicating that under these conditions PntAB functions to balance the NADH: NADPH equilibrium specifically in the direction of NADPH. The results also emphasize the importance of NAD(P)+ :NAD(P)H redox homeostasis and associated ATP:ADP equilibrium for maintaining the integrity of the photosynthetic apparatus under low-light glycolytic metabolism.


Assuntos
Luz , NADP Trans-Hidrogenases/metabolismo , Fotossíntese/efeitos da radiação , Synechocystis/enzimologia , Synechocystis/crescimento & desenvolvimento , Processos Autotróficos , Proteínas de Bactérias/metabolismo , Deleção de Genes , Glucose/farmacologia , Modelos Moleculares , Fenótipo , Filogenia , Análise de Sequência de DNA , Espectrometria de Fluorescência , Synechocystis/genética , Synechocystis/efeitos da radiação , Tilacoides/enzimologia
4.
Plant Physiol ; 171(2): 1307-19, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208274

RESUMO

Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light. Via membrane inlet mass spectrometry gas exchange, chlorophyll a fluorescence, P700 analysis, and inhibitor treatment of the wild type and various mutants deficient in RTOs, Flv1/3, and photosystem I, we investigated the contribution of these complexes to the alleviation of excess electrons in the photosynthetic chain. To our knowledge, for the first time, we demonstrated the activity of Cyd in oxygen uptake under light, although it was detected only upon inhibition of electron transfer at the cytochrome b6f site and in ∆flv1/3 under fluctuating light conditions, where linear electron transfer was drastically inhibited due to impaired photosystem I activity. Cox is mostly responsible for dark respiration and competes with P700 for electrons under high light. Only the ∆cox/cyd double mutant, but not single mutants, demonstrated a highly reduced plastoquinone pool in darkness and impaired gross oxygen evolution under light, indicating that thylakoid-based RTOs are able to compensate partially for each other. Thus, both electron sinks contribute to the alleviation of excess electrons under illumination: RTOs continue to function under light, operating on slower time ranges and on a limited scale, whereas Flv1/3 responds rapidly as a light-induced component and has greater capacity.


Assuntos
Oxirredutases/metabolismo , Synechocystis/enzimologia , Tilacoides/metabolismo , Transporte de Elétrons/efeitos da radiação , Fluorescência , Luz , Mutação/genética , Oxirredução/efeitos da radiação , Oxigênio/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Tilacoides/efeitos da radiação
5.
Plant Physiol ; 158(1): 514-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22095043

RESUMO

Changing of principal σ factor in RNA polymerase holoenzyme to a group 2 σ factor redirects transcription when cyanobacteria acclimate to suboptimal environmental conditions. The group 2 sigma factor SigB was found to be important for the growth of the cyanobacterium Synechocystis sp. PCC 6803 in high-salt (0.7 m NaCl) stress but not in mild heat stress at 43°C although the expression of the sigB gene was similarly highly, but only transiently up-regulated at both conditions. The SigB factor was found to regulate many salt acclimation processes. The amount of glucosylglycerol-phosphate synthase, a key enzyme in the production of the compatible solute glucosylglycerol, was lower in the inactivation strain ΔsigB than in the control strain. Addition of the compatible solute trehalose almost completely restored the growth of the ΔsigB strain at 0.7 m NaCl. High-salt conditions lowered the chlorophyll and phycobilin contents of the cells while protective carotenoid pigments, especially zeaxanthin and myxoxanthophyll, were up-regulated in the control strain. These carotenoids were up-regulated in the ΔsigCDE strain (SigB is the only functional group 2 σ factor) and down-regulated in the ΔsigB strain under standard conditions. In addition, the HspA heat shock protein was less abundant and more abundant in the ΔsigB and ΔsigCDE strains, respectively, than in the control strain in high-salt conditions. Some cellular responses are common to heat and salt stresses, but pretreatment with mild heat did not protect cells against salt shock although protection against heat shock was evident.


Assuntos
Proteínas de Bactérias/metabolismo , Tolerância ao Sal , Fator sigma/metabolismo , Synechocystis/fisiologia , Aclimatação , Proteínas de Bactérias/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Ficobilinas/metabolismo , Fator sigma/genética , Trealose/metabolismo
6.
Plants (Basel) ; 12(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38068604

RESUMO

Cyanobacteria were among the oldest organisms to undertake oxygenic photosynthesis and have an essential impact on the atmosphere and carbon/nitrogen cycles on the planet. The thylakoid membrane of cyanobacteria represents an intricate compartment that houses a variety of multi-component (pigment-)protein complexes, assembly factors, and regulators, as well as transporters involved in photosynthetic light reactions, and respiratory electron transport. How these protein components are incorporated into membranes during thylakoid formation and how individual complexes are regulated to construct the functional machinery remains elusive. Here, we carried out an in-depth statistical analysis of the thylakoid proteome data obtained during light-induced thylakoid membrane biogenesis in the model cyanobacterium Synechococcus elongatus PCC 7942. A total of 1581 proteins were experimentally quantified, among which 457 proteins demonstrated statistically significant variations in abundance at distinct thylakoid biogenesis stages. Gene Ontology and KEGG enrichment analysis revealed that predominantly photosystems, light-harvesting antennae, ABC transporters, and pathway enzymes involved in oxidative stress responses and protein folding exhibited notable alternations in abundance between high light and growth light. Moreover, through cluster analysis the 1581 proteins were categorized into six distinct clusters that have significantly different trajectories of the change in their abundance during thylakoid development. Our study provides insights into the physiological regulation for the membrane integration of protein components and functionally linked complexes during the cyanobacterial TM biogenesis process. The findings and analytical methodologies developed in this study may be valuable for studying the global responses of TM biogenesis and photosynthetic acclimation in plants and algae.

7.
Front Microbiol ; 13: 891895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694301

RESUMO

Proteomes of an oxygenic photosynthetic cyanobacterium, Synechocystis sp. PCC 6803, were analyzed under photoautotrophic (low and high CO2, assigned as ATLC and ATHC), photomixotrophic (MT), and light-activated heterotrophic (LAH) conditions. Allocation of proteome mass fraction to seven sub-proteomes and differential expression of individual proteins were analyzed, paying particular attention to photosynthesis and carbon metabolism-centered sub-proteomes affected by the quality and quantity of the carbon source and light regime upon growth. A distinct common feature of the ATHC, MT, and LAH cultures was low abundance of inducible carbon-concentrating mechanisms and photorespiration-related enzymes, independent of the inorganic or organic carbon source. On the other hand, these cells accumulated a respiratory NAD(P)H dehydrogenase I (NDH-11) complex in the thylakoid membrane (TM). Additionally, in glucose-supplemented cultures, a distinct NDH-2 protein, NdbA, accumulated in the TM, while the plasma membrane-localized NdbC and terminal oxidase decreased in abundance in comparison to both AT conditions. Photosynthetic complexes were uniquely depleted under the LAH condition but accumulated under the ATHC condition. The MT proteome displayed several heterotrophic features typical of the LAH proteome, particularly including the high abundance of ribosome as well as amino acid and protein biosynthesis machinery-related components. It is also noteworthy that the two equally light-exposed ATHC and MT cultures allocated similar mass fractions of the total proteome to the seven distinct sub-proteomes. Unique trophic condition-specific expression patterns were likewise observed among individual proteins, including the accumulation of phosphate transporters and polyphosphate polymers storing energy surplus in highly energetic bonds under the MT condition and accumulation under the LAH condition of an enzyme catalyzing cyanophycin biosynthesis. It is concluded that the rigor of cell growth in the MT condition results, to a great extent, by combining photosynthetic activity with high intracellular inorganic carbon conditions created upon glucose breakdown and release of CO2, besides the direct utilization of glucose-derived carbon skeletons for growth. This combination provides the MT cultures with excellent conditions for growth that often exceeds that of mere ATHC.

8.
J Bacteriol ; 193(1): 265-73, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20971916

RESUMO

Acclimation of cyanobacteria to environmental changes includes major changes in the gene expression patterns partly orchestrated by the replacement of a particular σ subunit with another in the RNA polymerase holoenzyme. The cyanobacterium Synechocystis sp. strain PCC 6803 encodes nine σ factors, all belonging to the σ(70) family. Cyanobacteria typically encode many group 2 σ factors that closely resemble the principal σ factor. We inactivated three out of the four group 2 σ factors of Synechocystis simultaneously in all possible combinations and found that all triple inactivation strains grow well under standard conditions. Unlike the other strains, the ΔsigBCD strain, which contains SigE as the only functional group 2 σ factor, did not grow faster under mixotrophic than under autotrophic conditions. The SigB and SigD factors were important in low-temperature acclimation, especially under diurnal light rhythm. The ΔsigBCD, ΔsigBCE, and ΔsigBDE strains were sensitive to high-light-induced photoinhibition, indicating a central role of the SigB factor in high-light tolerance. Furthermore, the ΔsigBCE strain (SigD is the only functional group 2 σ factor) appeared to be locked in the high-fluorescence state (state 1) and grew slowly in blue but not in orange or white light. Our results suggest that features of the triple inactivation strains can be categorized as (i) direct consequences of the inactivation of a particular σ factor(s) and (ii) effects resulting from the higher probability that the remaining group 2 σ factors associate with the RNA polymerase core.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fator sigma/metabolismo , Synechocystis/metabolismo , Aclimatação , Proteínas de Bactérias/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Fotossíntese/fisiologia , Fator sigma/genética , Synechocystis/genética , Temperatura , Fatores de Tempo
9.
Front Microbiol ; 12: 781864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899663

RESUMO

The ability to produce medium chain length aliphatic hydrocarbons is strictly conserved in all photosynthetic cyanobacteria, but the molecular function and biological significance of these compounds still remain poorly understood. This study gives a detailed view to the changes in intracellular hydrocarbon chain saturation in response to different growth temperatures and osmotic stress, and the associated physiological effects in the model cyanobacterium Synechocystis sp. PCC 6803. We show that the ratio between the representative hydrocarbons, saturated heptadecane and desaturated heptadecene, is reduced upon transition from 38°C toward 15°C, while the total content is not much altered. In parallel, it appears that in the hydrocarbon-deficient ∆ado (aldehyde deformylating oxygenase) mutant, phenotypic and metabolic changes become more evident under suboptimal temperatures. These include hindered growth, accumulation of polyhydroxybutyrate, altered pigment profile, restricted phycobilisome movement, and ultimately reduced CO2 uptake and oxygen evolution in the ∆ado strain as compared to Synechocystis wild type. The hydrocarbons are present in relatively low amounts and expected to interact with other nonpolar cellular components, including the hydrophobic part of the membrane lipids. We hypothesize that the function of the aliphatic chains is specifically associated with local fluidity effects of the thylakoid membrane, which may be required for the optimal movement of the integral components of the photosynthetic machinery. The findings support earlier studies and expand our understanding of the biological role of aliphatic hydrocarbons in acclimation to low temperature in cyanobacteria and link the proposed role in the thylakoid membrane to changes in photosynthetic performance, central carbon metabolism, and cell growth, which need to be effectively fine-tuned under alternating conditions in nature.

10.
Nat Commun ; 12(1): 3475, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108457

RESUMO

How thylakoid membranes are generated to form a metabolically active membrane network and how thylakoid membranes orchestrate the insertion and localization of protein complexes for efficient electron flux remain elusive. Here, we develop a method to modulate thylakoid biogenesis in the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942 by modulating light intensity during cell growth, and probe the spatial-temporal stepwise biogenesis process of thylakoid membranes in cells. Our results reveal that the plasma membrane and regularly arranged concentric thylakoid layers have no physical connections. The newly synthesized thylakoid membrane fragments emerge between the plasma membrane and pre-existing thylakoids. Photosystem I monomers appear in the thylakoid membranes earlier than other mature photosystem assemblies, followed by generation of Photosystem I trimers and Photosystem II complexes. Redistribution of photosynthetic complexes during thylakoid biogenesis ensures establishment of the spatial organization of the functional thylakoid network. This study provides insights into the dynamic biogenesis process and maturation of the functional photosynthetic machinery.


Assuntos
Membranas Intracelulares/metabolismo , Tilacoides/metabolismo , Proteínas de Bactérias/metabolismo , Membranas Intracelulares/ultraestrutura , Luz , Microscopia Eletrônica , Modelos Biológicos , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Multimerização Proteica , Proteômica , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo , Synechococcus/ultraestrutura , Tilacoides/ultraestrutura
11.
Nat Plants ; 6(9): 1179-1191, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32895528

RESUMO

The thylakoid membranes of cyanobacteria form a complex intracellular membrane system with a distinctive proteome. The sites of biogenesis of thylakoid proteins remain uncertain, as do the signals that direct thylakoid membrane-integral proteins to the thylakoids rather than to the plasma membrane. Here, we address these questions by using fluorescence in situ hybridization to probe the subcellular location of messenger RNA molecules encoding core subunits of the photosystems in two cyanobacterial species. These mRNAs cluster at thylakoid surfaces mainly adjacent to the central cytoplasm and the nucleoid, in contrast to mRNAs encoding proteins with other locations. Ribosome association influences the distribution of the photosynthetic mRNAs on the thylakoid surface, but thylakoid affinity is retained in the absence of ribosome association. However, thylakoid association is disrupted in a mutant lacking two mRNA-binding proteins, which probably play roles in targeting photosynthetic proteins to the thylakoid membrane.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membrana Celular/genética , Hibridização in Situ Fluorescente , Transporte Proteico/genética , Tilacoides/genética , Tilacoides/metabolismo
12.
Nat Plants ; 6(7): 869-882, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32665651

RESUMO

Cyanobacterial thylakoid membranes represent the active sites for both photosynthetic and respiratory electron transport. We used high-resolution atomic force microscopy to visualize the native organization and interactions of photosynthetic complexes within the thylakoid membranes from the model cyanobacterium Synechococcus elongatus PCC 7942. The thylakoid membranes are heterogeneous and assemble photosynthetic complexes into functional domains to enhance their coordination and regulation. Under high light, the chlorophyll-binding proteins IsiA are strongly expressed and associate with Photosystem I (PSI), forming highly variable IsiA-PSI supercomplexes to increase the absorption cross-section of PSI. There are also tight interactions of PSI with Photosystem II (PSII), cytochrome b6f, ATP synthase and NAD(P)H dehydrogenase complexes. The organizational variability of these photosynthetic supercomplexes permits efficient linear and cyclic electron transport as well as bioenergetic regulation. Understanding the organizational landscape and environmental adaptation of cyanobacterial thylakoid membranes may help inform strategies for engineering efficient photosynthetic systems and photo-biofactories.


Assuntos
Fotossíntese , Adaptação Fisiológica , Clorofila/metabolismo , Transporte de Elétrons , Luz , Microscopia de Força Atômica , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechococcus/fisiologia , Synechococcus/ultraestrutura , Tilacoides/fisiologia , Tilacoides/ultraestrutura
13.
Curr Biol ; 27(10): 1425-1436.e7, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28479323

RESUMO

Oxygenic photosynthesis crucially depends on proteins that possess Fe2+ or Fe/S complexes as co-factors or prosthetic groups. Here, we show that the small regulatory RNA (sRNA) IsaR1 (Iron-Stress-Activated RNA 1) plays a pivotal role in acclimation to low-iron conditions. The IsaR1 regulon consists of more than 15 direct targets, including Fe2+-containing proteins involved in photosynthetic electron transfer, detoxification of anion radicals, citrate cycle, and tetrapyrrole biogenesis. IsaR1 is essential for maintaining physiological levels of Fe/S cluster biogenesis proteins during iron deprivation. Consequently, IsaR1 affects the acclimation of the photosynthetic apparatus to iron starvation at three levels: (1) directly, via posttranscriptional repression of gene expression; (2) indirectly, via suppression of pigment; and (3) Fe/S cluster biosynthesis. Homologs of IsaR1 are widely conserved throughout the cyanobacterial phylum. We conclude that IsaR1 is a critically important riboregulator. These findings provide a new perspective for understanding the regulation of iron homeostasis in photosynthetic organisms.


Assuntos
Cianobactérias/fisiologia , Deficiências de Ferro , Oxigênio/metabolismo , Fotossíntese/fisiologia , Pequeno RNA não Traduzido/genética , Aclimatação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Perfilação da Expressão Gênica , Homeostase , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , RNA Bacteriano/genética , Transcrição Gênica , Transcriptoma
14.
PLoS One ; 8(4): e63020, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638176

RESUMO

Sigma factors of RNA polymerase recognize promoters and have a central role in controlling transcription initiation and acclimation to changing environmental conditions. The cyanobacterium Synechocystis sp. PCC 6803 encodes four non-essential group 2 sigma factors, SigB, SigC, SigD and SigE that closely resemble the essential SigA factor. Three out of four group 2 sigma factors were simultaneously inactivated and acclimation responses of the triple inactivation strains were studied. All triple inactivation strains grew slowly in low light, and our analysis suggests that the reason is a reduced capacity to adjust the perception of light. Simultaneous inactivation of SigB and SigD hampered growth also in high light. SigB is the most important group 2 sigma factor for salt acclimation, and elimination of all the other group 2 sigma factors slightly improved the salt tolerance of Synechocystis. Presence of only SigE allowed full salt acclimation including up-regulation of hspA and ggpS genes, but more slowly than SigB. Cells with only SigD acclimated to high salt but the acclimation processes differed from those of the control strain. Presence of only SigC prevented salt acclimation.


Assuntos
Proteínas de Bactérias/metabolismo , Luz , Fator sigma/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Synechocystis/fisiologia , Synechocystis/efeitos da radiação , Aclimatação/efeitos dos fármacos , Aclimatação/genética , Aclimatação/efeitos da radiação , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Genes Bacterianos/genética , Mutação/genética , Pigmentos Biológicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA