Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(35): E8315-E8322, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104383

RESUMO

The precise mechanisms that control gene activity during seed development remain largely unknown. Previously, we showed that several genes essential for seed development, including those encoding storage proteins, fatty acid biosynthesis enzymes, and transcriptional regulators (e.g., ABI3, FUS3) are located within hypomethylated regions of the soybean genome. These hypomethylated regions are similar to the DNA methylation valleys (DMVs), or canyons, found in mammalian cells. Here, we address the question of the extent to which DMVs are present within seed genomes and what role they might play in seed development. We scanned soybean and Arabidopsis seed genomes from postfertilization through dormancy and germination for regions that contain <5% or <0.4% bulk methylation in CG, CHG, and CHH contexts over all developmental stages. We found that DMVs represent extensive portions of seed genomes, range in size from 5-76 kb, are scattered throughout all chromosomes, and are hypomethylated throughout the plant life cycle. Significantly, DMVs are enriched greatly in transcription factor (TF) genes and other developmental genes that play critical roles in seed formation. Many DMV genes are regulated with respect to seed stage, region, and tissue, and contain H3K4me3, H3K27me3, or bivalent marks that fluctuate during development. Our results indicate that DMVs are a unique regulatory feature of both plant and animal genomes, and that a large number of seed genes are regulated in the absence of methylation changes during development, probably by the action of specific TFs and epigenetic events at the chromatin level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA/fisiologia , DNA de Plantas , Genoma de Planta/fisiologia , Glycine max , Sementes , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Epigênese Genética/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Sementes/genética , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(45): E9730-E9739, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078418

RESUMO

We profiled soybean and Arabidopsis methylomes from the globular stage through dormancy and germination to understand the role of methylation in seed formation. CHH methylation increases significantly during development throughout the entire seed, targets primarily transposable elements (TEs), is maintained during endoreduplication, and drops precipitously within the germinating seedling. By contrast, no significant global changes in CG- and CHG-context methylation occur during the same developmental period. An Arabidopsis ddcc mutant lacking CHH and CHG methylation does not affect seed development, germination, or major patterns of gene expression, implying that CHH and CHG methylation does not play a significant role in seed development or in regulating seed gene activity. By contrast, over 100 TEs are transcriptionally de-repressed in ddcc seeds, suggesting that the increase in CHH-context methylation may be a failsafe mechanism to reinforce transposon silencing. Many genes encoding important classes of seed proteins, such as storage proteins, oil biosynthesis enzymes, and transcription factors, reside in genomic regions devoid of methylation at any stage of seed development. Many other genes in these classes have similar methylation patterns, whether the genes are active or repressed. Our results suggest that methylation does not play a significant role in regulating large numbers of genes important for programming seed development in both soybean and Arabidopsis. We conclude that understanding the mechanisms controlling seed development will require determining how cis-regulatory elements and their cognate transcription factors are organized in genetic regulatory networks.


Assuntos
Arabidopsis/genética , Metilação de DNA/fisiologia , DNA de Plantas/metabolismo , Glycine max/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Sequência de Bases , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Inativação Gênica , Genes de Plantas/genética , Genoma de Planta/genética , Germinação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo , Sementes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA