Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(12): e2109717119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35298337

RESUMO

SignificanceTo move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes' optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes' whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies' depth-perception dynamics, limits, and visual behaviors.


Assuntos
Percepção de Profundidade , Drosophila , Animais , Olho , Disparidade Visual , Visão Ocular
2.
J Synchrotron Radiat ; 31(Pt 4): 841-850, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917019

RESUMO

The methanol-to-hydrocarbons (MTH) process involves the conversion of methanol, a C1 feedstock that can be produced from green sources, into hydrocarbons using shape-selective microporous acidic catalysts - zeolite and zeotypes. This reaction yields a complex mixture of species, some of which are highly reactive and/or present in several isomeric forms, posing significant challenges for effluent analysis. Conventional gas-phase chromatography (GC) is typically employed for the analysis of reaction products in laboratory flow reactors. However, GC is not suitable for the detection of highly reactive intermediates such as ketene or formaldehyde and is not suitable for kinetic studies under well defined low pressure conditions. Photoelectron-photoion coincidence (PEPICO) spectroscopy has emerged as a powerful analytical tool for unraveling complex compositions of catalytic effluents, but its availability is limited to a handful of facilities worldwide. Herein, PEPICO analysis of catalytic reactor effluents has been implemented at the FinEstBeAMS beamline of MAX IV Laboratory. The conversion of dimethyl ether (DME) on a zeolite catalyst (ZSM-5-MFI27) is used as a prototypical model reaction producing a wide distribution of hydrocarbon products. Since in zeolites methanol is quickly equilibrated with DME, this reaction can be used to probe vast sub-networks of the full MTH process, while eliminating or at least slowing down methanol-induced secondary reactions and catalyst deactivation. Quantitative discrimination of xylene isomers in the effluent stream is achieved by deconvoluting the coincidence photoelectron spectra.

3.
J Phys Chem A ; 127(6): 1395-1401, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36749682

RESUMO

Intramolecular hydrogen transfer, a reaction where donor and acceptor sites of a hydrogen atom are part of the same molecule, is a ubiquitous reaction in biochemistry and organic synthesis. In this work, we report hydronium ion (H3O+) production from aminobenzoic acid (ABA) after core-level ionization with soft X-ray synchrotron radiation. The formation of H3O+ during the fragmentation requires that at least two hydrogen atoms migrate to one of the oxygen atoms within the molecule. The comparison of two structural isomers, ortho- and meta-ABA, revealed that the production of H3O+ depends strongly on the structure of the molecule, the ortho-isomer being much more prone to produce H3O+. The isomer-dependency suggests that the amine group acts as a donor in the hydrogen transfer process. In the case of ortho-ABA, detailed H3O+ production pathways were investigated using photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy. It was found that H3O+ can result from a direct two-body dissociation but also from sequential fragmentation processes.

4.
Inorg Chem ; 61(18): 7017-7025, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35467857

RESUMO

The crystallization in glasses is a paradoxical phenomenon and scarcely investigated. This work explores the non-isothermal crystallization of a multicomponent alumino-borosilicate glass via in situ high-energy synchrotron X-ray diffraction, atomic pair distribution function, and Raman spectroscopy. Results depict the crystallization sequence as Ca3Al2O6 and CaSiO4 followed by LiAlO2 with the final compound formation of Ca3B2O6. These precipitations occur in a narrow temperature range and overlap, resulting in a single exothermic peak in the differential scanning calorimetry thermogram. The concurrent nucleation of Ca3Al2O6 and CaSiO4 is intermediated by their corresponding hydrates, which have dominantly short-range order. Moreover, the crystallization of LiAlO2 and Ca3B2O6 is strongly linked with the changes of structural units during the incubation stage in non-isothermal heating. These findings clarify the crystallization of multicomponent glass, which have been inferred from ex situ reports but never evidenced via in situ studies.

5.
Phys Chem Chem Phys ; 24(19): 11646-11653, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506916

RESUMO

Core ionization dynamics of argon-water heteroclusters ArM[H2O]N are investigated using a site and process selective experimental scheme combining 3 keV electron irradiation with Auger electron-ion-ion multi-coincidence detection. The formation of Ar 2p-1 vacancies followed by non-radiative decay to intermediate one-site doubly ionized states Ar2+(3p-2)-ArM-1[H2O]N and subsequent redistribution of charge to the cluster environment are monitored. At low argon concentrations the emission of an [H2O]n'H+/[H2O]n''H+ ion pair is the dominant outcome, implying on high efficiency of charge transfer to the water network. Increasing the condensation fraction of argon in the mixed clusters and/or to pure argon clusters is reflected as a growing yield of Arm'+/Arm''+ ion pairs, providing a fingerprint of the precursor heterocluster beam composition. The coincident Auger electron spectra, resolved with better than 1 eV resolution, show only subtle differences and thereby reflect the local nature of the initial Auger decay step. The results lead to better understanding of inner shell ionization processes in heterogeneous clusters and in aqueous environments in general.

6.
Phys Chem Chem Phys ; 24(3): 1456-1461, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985487

RESUMO

Non-metallic inclusions play a decisive role in the steel's performance. Therefore, their determination and control over their formation are crucial to engineer ultra-high-strength steel. Currently, bare experimental approaches are limited in the identification of non-metallic inclusions within microstructural phases of complex steel matrices. Herein, we performed a density functional theory study on the characteristics of different nitride inclusions as observed in spectro-microscopy studies. As per the simulations, TiN inclusions preferentially formed in the austenite matrix, while the ferrite matrix generally hosts BN inclusions. Furthermore, although the presence of both BN and TiN inclusions in the Fe3C matrix is possible, their formation is impeded because of the strong inclusion-carbon interactions. The observed regularity in the formation of nitride inclusions in different phases of steel was also confirmed by the comparison of simulated and experimental K-edge XAS spectrum of nitride inclusions. Our work shed the light on the formation of nitride inclusions in different steel matrices and facilitates their further experimental identification.

7.
Phys Chem Chem Phys ; 24(5): 2934-2943, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060587

RESUMO

The formation of multicomponent aerosol particles from precursor solution droplets often involves segregation and surface enrichment of the different solutes, resulting in non-homogeneous particle structures and diverse morphologies. In particular, these effects can have a significant influence on the chemical composition of the particle-vapor interface. In this work, we investigate the bulk/surface partitioning of inorganic ions, Na+, Mg2 +, Ca2 +, Cl- and Br-, in atomiser-generated submicron aerosols using synchrotron radiation based X-ray photoelectron spectroscopy (XPS). Specifically, the chemical compositions of the outermost few nm thick surface layers of non-supported MgCl2/CaCl2 and NaBr/MgBr2 particles are determined. It is found that in MgCl2/CaCl2 particles, the relative abundance of the two species in the particle surface correlates well with their mixing ratio in the parent aqueous solution. In stark contrast, extreme surface enrichment of Mg2 + is observed in NaBr/MgBr2 particles formed from both aqueous and organic solution droplets, indicative of core-shell structures. Structural properties and hydration state of the particles are discussed.

8.
J Synchrotron Radiat ; 28(Pt 5): 1620-1630, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475309

RESUMO

FinEstBeAMS (Finnish-Estonian Beamline for Atmospheric and Materials Sciences) is a multidisciplinary beamline constructed at the 1.5 GeV storage ring of the MAX IV synchrotron facility in Lund, Sweden. The beamline covers an extremely wide photon energy range, 4.5-1300 eV, by utilizing a single elliptically polarizing undulator as a radiation source and a single grazing-incidence plane grating monochromator to disperse the radiation. At photon energies below 70 eV the beamline operation relies on the use of optical and thin-film filters to remove higher-order components from the monochromated radiation. This paper discusses the performance of the beamline, examining such characteristics as the quality of the gratings, photon energy calibration, photon energy resolution, available photon flux, polarization quality and focal spot size.

9.
J Phys Chem A ; 125(22): 4750-4759, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34034483

RESUMO

The solvation of alkali and halide ions in the aqueous environment has been a subject of intense experimental and theoretical research with multidisciplinary interests; yet, a comprehensive molecular-level understanding has still not been obtained. In recent years, electron spectroscopy has been increasingly applied to study the electronic and structural properties of aqueous ions with implications, especially in atmospheric chemistry. In this work, we report core and valence level (Cl 2p, Cl 3p, and K 3p) photoelectron spectra of the common alkali halide, KCl, doped in gas-phase water clusters in the size range of a few hundred water molecules. The results indicate that the electronic structure of these nanosolutions shows a distinct character from that observed at the liquid-vapor interface in liquid microjets and ambient pressure setups. Insights are provided into the unique solvation properties of ions in a nanoaqueous environment, emerging properties of bulk electrolyte solutions with growing cluster size, and sensitivity of the electronic structure to varying solvation configurations.

10.
J Chem Phys ; 154(23): 234708, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241256

RESUMO

The composition-dependent change in the work-function (WF) of binary silver-potassium nanoparticles has been studied experimentally by synchrotron-based x-ray photoelectron spectroscopy (PES) and theoretically using a microscopic jellium model of metals. The Ag-K particles with different K fractions were produced by letting a beam of preformed Ag particles pass through a volume with K vapor. The PES on a beam of individual non-supported Ag-K nanoparticles created in this way allowed a direct absolute measurement of their WF, avoiding several usual shortcomings of the method. Experimentally, the WF has been found to be very sensitive to K concentration: Already at low exposure, it decreased down to ≈2 eV-below the value of pure K. In the jellium modeling, considered for Ag-K nanoparticles, two principally different adsorption patterns were tested: without and with K diffusion. The experimental and calculation results together suggest that only efficient surface alloying of two metals, whose immiscibility was long-term textbook knowledge, could lead to the observed WF values.

11.
J Synchrotron Radiat ; 27(Pt 4): 1080-1091, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566019

RESUMO

Since spring 2019 an experimental setup consisting of an electron spectrometer and an ion time-of-flight mass spectrometer for diluted samples has been available for users at the FinEstBeAMS beamline of the MAX IV Laboratory in Lund, Sweden. The setup enables users to study the interaction of atoms, molecules, (molecular) microclusters and nanoparticles with short-wavelength (vacuum ultraviolet and X-ray) synchrotron radiation and to follow the electron and nuclear dynamics induced by this interaction. Test measurements of N2 and thiophene (C4H4S) molecules have demonstrated that the setup can be used for many-particle coincidence spectroscopy. The measurements of the Ar 3p photoelectron spectra by linear horizontal and vertical polarization show that angle-resolved experiments can also be performed. The possibility to compare the electron spectroscopic results of diluted samples with solid targets in the case of Co2O3 and Fe2O3 at the Co and Fe L2,3-absorption edges in the same experimental session is also demonstrated. Because the photon energy range of the FinEstBeAMS beamline extends from 4.4 eV up to 1000 eV, electron, ion and coincidence spectroscopy studies can be executed in a very broad photon energy range.

12.
Phys Chem Chem Phys ; 22(20): 11307-11313, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32400830

RESUMO

The recently fabricated two-dimensional phosphorus carbide (PC) has been proposed for application in different nanodevices such as nanoantennas and field-effect transistors. However, the effect of ambient molecules on the properties of PC and, hence, the productivity of PC-based devices is still unknown. Herein a first-principles investigation is performed to study the most structurally stable α- and ß-PC allotropes upon their interaction with environmental molecules, including NH3, NO, NO2, H2O, and O2. It is predicted that NH3, H2O, and O2 are physisorbed on α- and ß-PC while NO and NO2 may easily form a covalent bond with the PC. Importantly, NO and NO2 possess low adsorption energies on PC which compared to these on graphene and phosphorene. Moreover, both molecules are strong acceptors to PC with a giant charge transfer of ∼1 e per molecule. For all the considered molecules PC is found to be more sensitive compared to graphene and phosphorene. The present work provides useful insight into the effects of environmental molecules on the structure and electronic properties of α- and ß-PC, which may be important for their manufacturing, storage, and application in gas sensors and electronic devices.

13.
Phys Chem Chem Phys ; 22(6): 3264-3272, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31998901

RESUMO

Hydrogen bonding leads to the formation of strong, extended intermolecular networks in molecular liquids such as water. However, it is less well-known how robust the network is to environments in which surface formation or confinement effects become prominent, such as in clusters or droplets. Such systems provide a useful way to probe the robustness of the network, since the degree of confinement can be tuned by altering the cluster size, changing both the surface-to-volume ratio and the radius of curvature. To explore the formation of hydrogen bond networks in confined geometries, here we present O 1s Auger spectra of small and large clusters of water, methanol, and dimethyl ether, as well as their deuterated equivalents. The Auger spectra of the clusters and the corresponding macroscopic liquids are compared and evaluated for an isotope effect, which is due to proton dynamics within the lifetime of the core hole (proton-transfer-mediated charge-separation, PTM-CS), and can be linked to the formation of a hydrogen bond network in the system. An isotope effect is observed in water and methanol but not for dimethyl ether, which cannot donate a hydrogen bond at its oxygen site. The isotope effect, and therefore the strength of the hydrogen bond network, is more pronounced in water than in methanol. Its value depends on the average size of the cluster, indicating that confinement effects change proton dynamics in the core ionised excited state.

14.
Phys Chem Chem Phys ; 22(5): 2648-2659, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31436275

RESUMO

Momenta of ions from diiodomethane molecules after multiple ionization by soft-X-ray free-electron-laser pulses are measured. Correlations between the ion momenta are extracted by covariance methods formulated for the use in multiparticle momentum-resolved ion time-of-flight spectroscopy. Femtosecond dynamics of the dissociating multiply charged diiodomethane cations is discussed and interpreted by using simulations based on a classical Coulomb explosion model including charge evolution.

15.
Phys Chem Chem Phys ; 22(46): 26806-26818, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33227117

RESUMO

A comprehensive electron spectroscopic study combined with partial electron yield measurements around the Br 1s ionization threshold of HBr at ≅13.482 keV is reported. In detail, the Br 1s-1 X-ray absorption spectrum, the 1s-1 photoelectron spectrum as well as the normal and resonant KLL Auger spectra are presented. Moreover, the L-shell Auger spectra measured with photon energies below and above the Br 1s-1 ionization energy as well as on top of the Br 1s-1σ* resonance are shown. The latter two Auger spectra represent the second step of the decay cascade subsequent to producing a Br 1s-1 core hole. The measurements provide information on the electron and nuclear dynamics of deep core-excited states of HBr on the femtosecond timescale. From the different spectra the lifetime broadening of the Br 1s-1 single core-hole state as well as of the Br(2s-2,2s-12p-1,2p-2)  double core-hole states are extracted and discussed. The slope of the strongly dissociative HBr 2p-2σ* potential energy curve is found to be about -13.60 eV Å-1. The interpretation of the experimental data, and in particular the assignment of the spectral features in the KLL and L-shell Auger spectra, is supported by relativistic calculations for HBr molecule and atomic Br.

16.
Molecules ; 25(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630014

RESUMO

Lignans are bioactive compounds that are especially abundant in the Norway spruce (Picea abies L. Karst.) knotwood. By combining a variety of chromatographic, spectroscopic and imaging techniques, we were able to quantify, qualify and localise the easily extractable lignans in the xylem tissue. The knotwood samples contained 15 different lignans according to the gas chromatography-mass spectrometry analysis. They comprised 16% of the knotwood dry weight and 82% of the acetone extract. The main lignans were found to be hydroxymatairesinols HMR1 and HMR2. Cryosectioned and resin-embedded ultrathin sections of the knotwood were analysed with scanning transmission X-ray microscopy (STXM). Cryosectioning was found to retain only lignan residues inside the cell lumina. In the resin-embedded samples, lignan was interpreted to be unevenly distributed inside the cell lumina, and partially confined in deposits which were either readily present in the lumina or formed when OsO4 used in staining reacted with the lignans. Furthermore, the multi-technique characterisation enabled us to obtain information on the chemical composition of the structural components of knotwood. A simple spectral analysis of the STXM data gave consistent results with the gas chromatographic methods about the relative amounts of cell wall components (lignin and polysaccharides). The STXM analysis also indicated that a torus of a bordered pit contained aromatic compounds, possibly lignin.


Assuntos
Lignanas/análise , Microscopia Eletrônica de Transmissão e Varredura/métodos , Picea/química , Espectrometria por Raios X/métodos , Microtomografia por Raio-X/métodos , Lignanas/química
17.
Phys Chem Chem Phys ; 21(10): 5448-5454, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793147

RESUMO

Hard X-ray electron spectroscopic study of iodine 1s and 2s photoionization of iodomethane (CH3I) and trifluoroiodomethane (CF3I) molecules is presented. The experiment was carried out at the SPring-8 synchrotron radiation facility in Japan. The results are analyzed with the aid of relativistic molecular and atomic calculations. It is shown that charge redistribution within the molecule is experimentally observable even for very deep levels and is a function of the number of electron vacancies. We also show that the analysis of Auger spectra subsequent to hard X-ray photoionization can be used to provide insight into charge distribution in molecules and highlight the necessity of quantum electrodynamics corrections in the prediction of core shell binding energies in molecules that contain heavy atoms.

18.
Small ; 14(22): e1704526, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29687601

RESUMO

A critical factor for electronics based on inorganic layered crystals stems from the electrical contact mode between the semiconducting crystals and the metal counterparts in the electric circuit. Here, a materials tailoring strategy via nanocomposite decoration is carried out to reach metallic contact between MoS2 matrix and transition metal nanoparticles. Nickel nanoparticles (NiNPs) are successfully joined to the sides of a layered MoS2 crystal through gold nanobuffers, forming semiconducting and magnetic NiNPs@MoS2 complexes. The intrinsic semiconducting property of MoS2 remains unchanged, and it can be lowered to only few layers. Chemical bonding of the Ni to the MoS2 host is verified by synchrotron radiation based photoemission electron microscopy, and further proved by first-principles calculations. Following the system's band alignment, new electron migration channels between metal and the semiconducting side contribute to the metallic contact mechanism, while semiconductor-metal heterojunctions enhance the photocatalytic ability.

19.
Phys Chem Chem Phys ; 19(36): 25158-25167, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28884174

RESUMO

Concentration dependent solvation of RbBr in freestanding sub-2 nm water clusters was studied using core level photoelectron spectroscopy with synchrotron radiation. Spectral features recorded from dilute to saturated clusters indicate that either solvent shared or contact ion pairs are present in increasing amount when the concentration exceeds 2 mol kg-1. For comparison, spectra from anhydrous RbBr clusters are also presented.

20.
Angew Chem Int Ed Engl ; 56(47): 14977-14981, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29024224

RESUMO

A mesoporous MnCo2 O4 electrode material is made for bifunctional oxygen electrocatalysis. The MnCo2 O4 exhibits both Co3 O4 -like activity for oxygen evolution reaction (OER) and Mn2 O3 -like performance for oxygen reduction reaction (ORR). The potential difference between the ORR and OER of MnCo2 O4 is as low as 0.83 V. By XANES and XPS investigation, the notable activity results from the preferred MnIV - and CoII -rich surface. The electrode material can be obtained on large-scale with the precise chemical control of the components at relatively low temperature. The surface state engineering may open a new avenue to optimize the electrocatalysis performance of electrode materials. The prominent bifunctional activity shows that MnCo2 O4 could be used in metal-air batteries and/or other energy devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA