RESUMO
Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.
Assuntos
Consolidação da Memória , Córtex Motor , Consolidação da Memória/fisiologia , Vigília , Aprendizagem/fisiologia , Memória de Longo Prazo , Destreza Motora/fisiologia , Córtex Motor/fisiologiaRESUMO
Understanding behavior in aging has benefited greatly from cognitive neuroscience. Our foundational understanding of the brain in advanced age is based on what now amounts to several decades of work demonstrating differences in brain structure, network organization, and function. Earlier work in this field was focused primarily on the prefrontal cortex and hippocampus. More recent evidence has expanded our understanding of the aging brain to also implicate the cerebellum. Recent frameworks have suggested that the cerebellum may act as scaffolding for cortical function, and there is an emerging literature implicating the structure in Alzheimer's disease. At this juncture, there is evidence highlighting the potential importance of the cerebellum in advanced age, though the field of study is relatively nascent. Here, we provide an overview of key findings in the literature as it stands now and highlight several key future directions for study with respect to the cerebellum in aging.
RESUMO
Many proteins display conformational changes resulting from allosteric regulation. Often only a few residues are crucial in conveying these structural and functional allosteric changes. These regions that undergo a significant change in structure upon receiving an input signal, such as molecular recognition, are defined as switch-like regions. Identifying these key residues within switch-like regions can help elucidate the mechanism of allosteric regulation and provide guidance for synthetic regulation. In this study, we combine a novel computational workflow with biochemical methods to identify a switch-like region in the N-terminal domain of human SIRT1 (hSIRT1), a lysine deacetylase that plays important roles in regulating cellular pathways. Based on primary sequence, computational methods predicted a region between residues 186-193 in hSIRT1 to exhibit switch-like behavior. Mutations were then introduced in this region and the resulting mutants were tested for allosteric reactions to resveratrol, a known hSIRT1 allosteric regulator. After fine-tuning the mutations based on comparison of known secondary structures, we were able to pinpoint M193 as the residue essential for allosteric regulation, likely by communicating the allosteric signal. Mutation of this residue maintained enzyme activity but abolished allosteric regulation by resveratrol. Our findings suggest a method to predict switch-like regions in allosterically regulated enzymes based on the primary sequence. If further validated, this could be an efficient way to identify key residues in enzymes for therapeutic drug targeting and other applications.