Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 34(35): e2203613, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772104

RESUMO

There is growing demand for multiresponsive soft actuators for the realization of natural, safe, and complex motions in robotic interactions. In particular, soft actuators simultaneously stimulated by electrical and magnetic fields are always under development owing to their simple controllability and reliability during operation. Herein, magnetically and electrically driven dual-responsive soft actuators (MESAs) derived from novel nickel-based metal-organic frameworks (Ni-MOFs-700C), are reported. Nanoscale Ni-MOFs-700C has excellent electrochemical and magnetic properties that allow it to be used as a multifunctional material under both magnetoactive and electro-ionic actuations. The dual-responsive MESA exhibits a bending displacement of 30 mm and an ultrafast rising time of 1.5 s under a very low input voltage of 1 V and also exerts a bending deflection of 12.5 mm at 50 mT under a high excitation frequency of 5 Hz. By utilizing a dual-responsive MESA, the hovering motion of a hummingbird robot is demonstrated under magnetic and electrical stimuli.

2.
Nat Commun ; 11(1): 5358, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097728

RESUMO

In the field of bioinspired soft robotics, to accomplish sophisticated tasks in human fingers, electroactive artificial muscles are under development. However, most existing actuators show a lack of high bending displacement and irregular response characteristics under low input voltages. Here, based on metal free covalent triazine frameworks (CTFs), we report an electro-ionic soft actuator that shows high bending deformation under ultralow input voltages that can be implemented as a soft robotic touch finger on fragile displays. The as-synthesized CTFs, derived from a polymer of intrinsic microporosity (PIM-1), were combined with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) to make a flexible electrode for a high-performance electro-ionic soft actuator. The proposed soft touch finger showed high peak-to-peak displacement of 17.0 mm under ultralow square voltage of ±0.5 V, with 0.1 Hz frequency and 4 times reduced phase delay in harmonic response compared with that of a pure PEDOT-PSS-based actuator. The significant actuation performance is mainly due to the unique physical and chemical configurations of CTFs electrode with highly porous and electrically conjugated networks. On a fragile display, the developed soft robotic touch finger array was successfully used to perform soft touching, similar to that of a real human finger; device was used to accomplish a precise task, playing electronic piano.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA