Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Nature ; 603(7902): 631-636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322249

RESUMO

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

2.
Nature ; 577(7790): 359-363, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942056

RESUMO

The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials1,2 is well known. However, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations3-5. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We illustrate our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains6, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase7. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation8-10. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.

3.
Nat Mater ; 23(1): 108-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919351

RESUMO

Multi-metal oxides in general and perovskite oxides in particular have attracted considerable attention as oxygen evolution electrocatalysts. Although numerous theoretical studies have been undertaken, the most promising perovskite-based catalysts continue to emerge from human-driven experimental campaigns rather than data-driven machine learning protocols, which are often limited by the scarcity of experimental data on which to train the models. This work promises to break this impasse by demonstrating that active learning on even small datasets-but supplemented by informative structural-characterization data and coupled with closed-loop experimentation-can yield materials of outstanding performance. The model we develop not only reproduces several non-obvious and actively studied experimental trends but also identifies a composition of a perovskite oxide electrocatalyst exhibiting an intrinsic overpotential at 10 mA cm-2oxide of 391 mV, which is among the lowest known of four-metal perovskite oxides.

4.
Nat Mater ; 23(4): 552-559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316979

RESUMO

Developing active and stable atomically dispersed catalysts is challenging because of weak non-specific interactions between catalytically active metal atoms and supports. Here we demonstrate a general method for synthesizing atomically dispersed catalysts via photochemical defect tuning for controlling oxygen-vacancy dynamics, which can induce specific metal-support interactions. The developed synthesis method offers metal-dynamically stabilized atomic catalysts, and it can be applied to reducible metal oxides, including TiO2, ZnO and CeO2, containing various catalytically active transition metals, including Pt, Ir and Cu. The optimized Pt-DSA/TiO2 shows unprecedentedly high photocatalytic hydrogen evolution activity, producing 164 mmol g-1 h-1 with a turnover frequency of 1.27 s-1. Furthermore, it generates 42.2 mmol gsub-1 of hydrogen via a non-recyclable-plastic-photoreforming process, achieving a total conversion of 98%; this offers a promising solution for mitigating plastic waste and simultaneously producing valuable energy sources.

5.
J Am Chem Soc ; 146(18): 12556-12564, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38660792

RESUMO

Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu3N nanocrystals as starting materials to synthesize Ni4N and CoN nanocrystals. By controlling the reaction conditions, Cu3N@Ni4N and Cu3N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni4N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm-2, a small Tafel slope of 89 mV·dec-1, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.

6.
Acc Chem Res ; 56(9): 1118-1127, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37079799

RESUMO

ConspectusAtomically precise metal chalcogenide clusters (MCCs) are model molecular compounds of scientifically and technologically important semiconductor nanocrystals, which are known as quantum dots (QDs). The significantly high ambient stability of MCCs of particular sizes, as compared to that of slightly smaller or larger sizes, made them be termed "magic-sized clusters" (MSCs). In other words, MSCs with specific sizes between sizes of precursors (typically, metal-ligand complexes) and nanocrystals (typically, QDs) appear sequentially during the colloidal synthesis of nanocrystals, while the other cluster species decompose to precursor monomers or are consumed during the growth of the nanocrystals. Unlike nanocrystals with an ambiguous atomic-level structure and a substantial size distribution, MSCs possess atomically monodisperse size, composition, and distinct atomic arrangement. Chemical synthesis and exploration of properties of MSCs are of great significance since they help systematically understand the evolution of fundamental properties as well as build structure-activity relationships at distinct molecular levels. Furthermore, MSCs are anticipated to offer atomic-level insights into the growth mechanism of the semiconductor nanocrystals, which is highly desirable in the design of advanced materials with new functions. In this Account, we cover our recent efforts in the advancement of one of the most important stoichiometric CdSe MSCs, (CdSe)13. In particular, we present its molecular structure derived from a single crystal X-ray crystallographic study of the closest MSC, Cd14Se13. The crystal structure of MSC enables not only the understanding of the electronic structure and prediction of the potential sites for heteroatom dopants (e.g., Mn2+ and Co2+) but also the identification of favorable synthetic conditions for the selective synthesis of desired MSCs. Next, we focus on enhancing the photoluminescence quantum yield and stability of Mn2+ doped (CdSe)13 MSCs through their self-assembly, which is facilitated by the rigid diamines. In addition, we show how atomic-level synergistic effects and functional groups of the assemblies of alloy MSCs can be utilized for a highly enhanced catalytic CO2 fixation with epoxides. Benefiting from the intermediate stability, the MSCs are explored as single-source precursors to low-dimensional nanostructures, such as nanoribbons and nanoplatelets, through the controlled transformation. Distinct differences in the outcome of the solid-state and colloidal-state conversion of MSCs suggest the need for careful consideration of the phase and reactivity of MSCs as well as the type of dopant to achieve novel structured multicomponent semiconductors. Finally, we summarize the Account and provide future perspectives on the fundamental and applied scientific research of MSCs.

7.
Chem Rev ; 122(5): 5068-5143, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34962131

RESUMO

Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.


Assuntos
Nanocompostos , Dispositivos Eletrônicos Vestíveis , Eletrônica
8.
J Nanobiotechnology ; 22(1): 419, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014410

RESUMO

BACKGROUND: Iron oxide nanoparticles (IONPs) have been cleared by the Food and Drug Administration (FDA) for various clinical applications, such as tumor-targeted imaging, hyperthermia therapy, drug delivery, and live-cell tracking. However, the application of IONPs as T1 contrast agents has been restricted due to their high r2 values and r2/r1 ratios, which limit their effectiveness in T1 contrast enhancement. Notably, IONPs with diameters smaller than 5 nm, referred to as extremely small-sized IONPs (ESIONs), have demonstrated potential in overcoming these limitations. To advance the clinical application of ESIONs as T1 contrast agents, we have refined a scale-up process for micelle encapsulation aimed at improving the hydrophilization of ESIONs, and have carried out comprehensive in vivo biodistribution and preclinical toxicity assessments. RESULTS: The optimization of the scale-up micelle-encapsulation process, specifically employing Tween60 at a concentration of 10% v/v, resulted in ESIONs that were uniformly hydrophilized, with an average size of 9.35 nm and a high purification yield. Stability tests showed that these ESIONs maintained consistent size over extended storage periods and dispersed effectively in blood and serum-mimicking environments. Relaxivity measurements indicated an r1 value of 3.43 mM- 1s- 1 and a favorable r2/r1 ratio of 5.36, suggesting their potential as T1 contrast agents. Biodistribution studies revealed that the ESIONs had extended circulation times in the bloodstream and were primarily cleared via the hepatobiliary route, with negligible renal excretion. We monitored blood clearance and organ distribution using positron emission tomography and magnetic resonance imaging (MRI). Additionally, MRI signal variations in a dose-dependent manner highlighted different behaviors at varying ESIONs concentrations, implying that optimal dosages might be specific to the intended imaging application. Preclinical safety evaluations indicated that ESIONs were tolerable in rats at doses up to 25 mg/kg. CONCLUSIONS: This study effectively optimized a scale-up process for the micelle encapsulation of ESIONs, leading to the production of hydrophilic ESIONs at gram-scale levels. These optimized ESIONs showcased properties conducive to T1 contrast imaging, such as elevated r1 relaxivity and a reduced r2/r1 ratio. Biodistribution study underscored their prolonged bloodstream presence and efficient clearance through the liver and bile, without significant renal involvement. The preclinical toxicity tests affirmed the safety of the ESIONs, supporting their potential use as T1 contrast agent with versatile clinical application.


Assuntos
Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Micelas , Tamanho da Partícula , Animais , Meios de Contraste/química , Meios de Contraste/farmacocinética , Distribuição Tecidual , Imageamento por Ressonância Magnética/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Camundongos , Ratos , Masculino , Humanos , Feminino
9.
J Am Chem Soc ; 145(6): 3401-3407, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541445

RESUMO

While atomically monodisperse nanostructured materials are highly desirable to unravel the size- and structure-catalysis relationships, their controlled synthesis and the atomic-level structure determination pose challenges. Particularly, copper-containing atomically precise alloy nanoclusters are potential catalyst candidates for the electrochemical CO2 reduction reaction (eCO2RR) due to high abundance and tunable catalytic activity of copper. Herein, we report the synthesis and total structure of an alkynyl-protected 21-atom AgCu alloy nanocluster [Ag15Cu6(C≡CR)18(DPPE)2]-, denoted as Ag15Cu6 (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene; DPPE: 1,2-bis(diphenylphosphino)ethane). The single-crystal X-ray diffraction reveals that Ag15Cu6 consists of an Ag11Cu4 metal core exhibiting a body-centered cubic (bcc) structure, which is capped by 2 Cu atoms, 2 Ag2DPPE motifs, and 18 alkynyl ligands. Interestingly, the Ag15Cu6 cluster exhibits excellent catalytic activity for eCO2RR with a CO faradaic efficiency (FECO) of 91.3% at -0.81 V (vs the reversible hydrogen electrode, RHE), which is much higher than that (FECO: 48.5% at -0.89 V vs RHE) of Ag9Cu6 with bcc structure. Furthermore, Ag15Cu6 shows superior stability with no significant decay in the current density and FECO during a long-term operation of 145 h. Density functional theory calculations reveal that the de-ligated Ag15Cu6 cluster can expose more space at the pair of AgCu dual metals as the efficient active sites for CO formation.

10.
J Am Chem Soc ; 145(29): 15951-15962, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436556

RESUMO

The ability to manipulate crystal structures using kinetic control is of broad interest because it enables the design of materials with structures, compositions, and morphologies that may otherwise be unattainable. Herein, we report the low-temperature structural transformation of bulk inorganic crystals driven by hard-soft acid-base (HSAB) chemistry. We show that the three-dimensional framework K2Sb8Q13 and layered KSb5Q8 (Q = S, Se, and Se/S solid solutions) compounds transform to one-dimensional Sb2Q3 nano/microfibers in N2H4·H2O solution by releasing Q2- and K+ ions. At 100 °C and ambient pressure, a transformation process takes place that leads to significant structural changes in the materials, including the formation and breakage of covalent bonds between Sb and Q. Despite the insolubility of the starting crystals in N2H4·H2O under the given conditions, the mechanism of this transformation can be rationalized by applying the HSAB principle. By adjusting factors such as the reactants' acid/base properties, temperature, and pressure, the process can be controlled, allowing for the achievement of a wide range of optical band gaps (ranging from 1.14 to 1.59 eV) while maintaining the solid solution nature of the anion sublattice in the Sb2Q3 nanofibers.

11.
J Am Chem Soc ; 145(50): 27407-27414, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055351

RESUMO

Unraveling the atomistic synergistic effects of nanoalloys on the electrocatalytic CO2 reduction reaction (eCO2RR), especially in the presence of copper, is of paramount importance. However, this endeavor encounters significant challenges due to the lack of the crystallographically determined atomic-level structure of appropriate monometallic and bimetallic analogues. Herein, we report a one-pot synthesis and structure characterization of a AuCu nanoalloy cluster catalyst, [Au15Cu4(DPPM)6Cl4(C≡CR)1]2+ (denoted as Au15Cu4). Single-crystal X-ray diffraction analysis reveals that Au15Cu4 comprises two interpenetrating incomplete, centered icosahedra (Au9Cu2 and Au8Cu3) and is protected by six DPPM, four halide, and one alkynyl ligand. The Au15Cu4 cluster and its closest monometal structural analogue, [Au18(DPPM)6Br4]2+ (denoted as Au18), as model systems, enable the elucidation of the atomistic synergistic effects of Au and Cu on eCO2RR. The results reveal that Au15Cu4 is an excellent eCO2RR catalyst in a gas diffusion electrode-based membrane electrode assembly (MEA) cell, exhibiting a high CO Faradaic efficiency (FECO) of >90%, and this efficiency is substantially higher than that of the undoped Au18 (FECO: 60% at -3.75 V). Au15Cu4 exhibits an industrial-level CO partial current density of up to -413 mA/cm2 at -3.75 V with the gas CO2-fed MEA, which is 2-fold higher than that of Au18. The density functional theory (DFT) calculations demonstrate that the synergistic effects are induced by Cu doping, where the exposed pair of AuCu dual sites was suggested for launching the eCO2RR process. Besides, DFT simulations reveal that these special dual sites synergistically coordinate a moderate shift in the d-state, thus enhancing its overall catalytic performance.

12.
J Am Chem Soc ; 145(4): 2264-2270, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689604

RESUMO

The limitations of conventional strategies in finely controlling the composition and structure demand new promotional effects for upgrading the reverse water-gas shift (RWGS) catalysts for enhanced fuel production. We report the design and synthesis of a hetero-dual-site catalyst for boosting RWGS performance by controllably loading Fe atoms at the neighboring Pt atom on the surface of commercial CeO2. The Fe-Pt/CeO2 exhibits a remarkably high catalytic performance (TOFPt: 43,519 h-1) for CO2 to CO conversion with ∼100% CO selectivity at a relatively low temperature of 350 °C. Furthermore, the catalyst retains over 80% activity after 200 h of continuous operation. The experimental and computational investigations reveal a "two-way synergistic effect", where Fe atoms can not only serve as promotors to alter the charge density of Pt atoms but also be activated by the excess active hydrogen species generated by Pt atoms, enhancing catalytic activity and stability.

13.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314036

RESUMO

The chemical synthesis of (CdSe)13 magic-sized clusters (MSCs) allows the replacement of host atoms by individual transition metals such as Mn. By analyzing the spectral fingerprints of the Mn2+ photoluminescence (PL) in MSCs with different dopant concentrations, we are able to distinguish between single Mn2+ ions and coupled Mn2+ pairs. In case of Mn2+ pair emission, temperature-dependent studies show a pronounced red shift, followed by a distinct blue shift of the PL energy upon heating. This is related to a spin ladder formation of the ground and excited states due to Mn2+-Mn2+ exchange interaction at cryogenic temperatures, which is assumed to vanish at higher temperatures. In contrast, single Mn2+ ion PL exhibits a unique redshift with increasing temperature, which can be attributed to a particularly strong coupling to vibronic modes due to the ultimate small size of the MSCs.

14.
Nano Lett ; 22(9): 3636-3644, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35357196

RESUMO

Exposing facet and surface strain are critical factors affecting catalytic performance but unraveling the composition-dependent activity on specific facets under strain-controlled environment is still challenging due to the synthetic difficulties. Herein, we achieved a (001) facet-defined Co-Mn spinel oxide surface with different surface compositions using epitaxial growth on Co3O4 nanocube template. We adopted composition gradient synthesis to relieve the strain layer by layer, minimizing the surface strain effect on catalytic activity. In this system, experimental and calculational analyses of model oxygen reduction reaction (ORR) activity reveals a volcano-like trend with Mn/Co ratios because of an adequate charge transfer from octahedral-Mn to neighboring Co. Co0.5Mn0.5 as an optimized Mn/Co ratio exhibits both outstanding ORR activity (0.894 V vs RHE in 1 M KOH) and stability (2% activity loss against chronoamperometry). By controlling facet and strain, this study provides a well-defined platform for investigating composition-structure-activity relationships in electrocatalytic processes.

15.
Angew Chem Int Ed Engl ; 62(12): e202217483, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36581588

RESUMO

Understanding the origin of chirality in the nanostructured materials is essential for chiroptical and catalytic applications. Here we report a chiral AgCu superatomic cluster, [Ag22 Cu7 (C≡CR)16 (PPh3 )5 Cl6 ](PPh4 ), Ag22 Cu7 , protected by an achiral alkynyl ligand (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene). Its crystal structure comprises a rare interpenetrating biicosahedral Ag17 Cu2 core, which is stabilized by four different types of motifs: one Cu(C≡CR)2 , four -C≡CR, two chlorides and one helical Ag5 Cu4 (C≡CR)10 (PPh3 )5 Cl4 . Structural analysis reveals that Ag22 Cu7 exhibits multiple chirality origins, including the metal core, the metal-ligand interface and the ligand layer. Furthermore, the circular dichroism spectra of R/S-Ag22 Cu7 are obtained by employing appropriate chiral molecules as optical enrichment agents. DFT calculations show that Ag22 Cu7 is an eight-electron superatom, confirm that the cluster is chirally active, and help to analyze the origins of the circular dichroism.

16.
Angew Chem Int Ed Engl ; 62(28): e202302877, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165571

RESUMO

Reducible oxide-supported noble metal nanoparticles exhibit high activity in catalyzing many important oxidation reactions. However, atom migration under harsh reaction conditions leads to deactivation of the catalyst. Meanwhile, single-atom catalysts demonstrate enhanced stability, but often suffer from poor catalytic activity owing to the ionized surface states. In this work, we simultaneously address the poor activity and stability issues by synthesizing highly active and durable rhodium (Rh) single-atom catalysts through a "wrap-bake-peel" process. The pre-coated SiO2 layer during synthesis of catalyst plays a crucial role in not only protecting CeO2 support against sintering, but also donating electron to weaken the Ce-O bond, producing highly loaded Rh single atoms on the CeO2 support exposed with high-index {210} facets. Benefiting from the unique electronic structure of CeO2 {210} facets, more oxygen vacancies are generated along with the deposition of more electropositive Rh single atoms, leading to remarkably improved catalytic performance in CO oxidation.

17.
J Am Chem Soc ; 144(13): 5769-5783, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35275625

RESUMO

The receptor-ligand interactions in cells are dynamically regulated by modulation of the ligand accessibility. In this study, we utilize size-tunable magnetic nanoparticle aggregates ordered at both nanometer and atomic scales. We flexibly anchor magnetic nanoparticle aggregates of tunable sizes over the cell-adhesive RGD ligand (Arg-Gly-Asp)-active material surface while maintaining the density of dispersed ligands accessible to macrophages at constant. Lowering the accessible ligand dispersity by increasing the aggregate size at constant accessible ligand density facilitates the binding of integrin receptors to the accessible ligands, which promotes the adhesion of macrophages. In high ligand dispersity, distant magnetic manipulation to lift the aggregates (which increases ligand accessibility) stimulates the binding of integrin receptors to the accessible ligands available under the aggregates to augment macrophage adhesion-mediated pro-healing polarization both in vitro and in vivo. In low ligand dispersity, distant control to drop the aggregates (which decreases ligand accessibility) repels integrin receptors away from the aggregates, thereby suppressing integrin receptor-ligand binding and macrophage adhesion, which promotes inflammatory polarization. Here, we present "accessible ligand dispersity" as a novel fundamental parameter that regulates receptor-ligand binding, which can be reversibly manipulated by increasing and decreasing the ligand accessibility. Limitless tuning of nanoparticle aggregate dimensions and morphology can offer further insight into the regulation of receptor-ligand binding in host cells.


Assuntos
Integrinas , Nanopartículas , Adesão Celular , Integrinas/metabolismo , Ligantes , Macrófagos/metabolismo
18.
Nat Mater ; 20(5): 650-657, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33462468

RESUMO

Metal chalcogenide magic-sized nanoclusters have shown intriguing photophysical and chemical properties, yet ambient instability has hampered their extensive applications. Here we explore the periodic assembly of these nanoscale building blocks through organic linkers to overcome such limitations and further boost their properties. We designed a diamine-based heat-up self-assembly process to assemble Mn2+:(CdSe)13 and Mn2+:(ZnSe)13 magic-sized nanoclusters into three- and two-dimensional suprastructures, respectively, obtaining enhanced stability and solid-state photoluminescence quantum yields (from <1% for monoamine-based systems to ~72% for diamine-based suprastructures). We also exploited the atomic-level miscibility of Cd and Zn to synthesize Mn2+:(Cd1-xZnxSe)13 alloy suprastructures with tunable metal synergy: Mn2+:(Cd0.5Zn0.5Se)13 suprastructures demonstrated high catalytic activity (turnover number, 17,964 per cluster in 6 h; turnover frequency, 2,994 per cluster per hour) for converting CO2 to organic cyclic carbonates under mild reaction conditions. The enhanced stability, photoluminescence and catalytic activity through combined cluster-assembly and metal synergy advance the usability of inorganic semiconductor nanoclusters.

19.
Nano Lett ; 21(19): 7953-7959, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34585926

RESUMO

Oxygen vacancies and their correlation with the electronic structure are crucial to understanding the functionality of TiO2 nanocrystals in material design applications. Here, we report spectroscopic investigations of the electronic structure of anatase TiO2 nanocrystals by employing hard and soft X-ray absorption spectroscopy measurements along with the corresponding model calculations. We show that the oxygen vacancies significantly transform the Ti local symmetry by modulating the covalency of titanium-oxygen bonds. Our results suggest that the altered Ti local symmetry is similar to the C3v, which implies that the Ti exists in two local symmetries (D2d and C3v) at the surface. The findings also indicate that the Ti distortion is a short-range order effect and presumably confined up to the second nearest neighbors. Such distortions modulate the electronic structure and provide a promising approach to structural design of the TiO2 nanocrystals.

20.
Nano Lett ; 21(1): 26-33, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258610

RESUMO

Colloidal quantum dots (QDs) exhibit unique characteristics such as facile color tunability, pure color emission with extremely narrow bandwidths, high luminescence efficiency, and high photostability. In addition, quantum dot light-emitting diodes (QLEDs) feature bright electroluminescence, low turn-on voltage, and ultrathin form factor, making them a promising candidate for next-generation displays. To achieve the overarching goal of the full-color display based on the electroluminescence of QDs, however it is essential to enhance the performance of QLEDs further for each color (e.g., red, green, and blue; RGB) and develop novel techniques for patterning RGB QD pixels without cross-contamination. Here, we present state-of-the-art material, process, and device technologies for full-color QLED-based displays. First, we highlight recent advances in the development of efficient red-, green-, and blue-monochromatic QLEDs. In particular, we focus on the progress of heavy-metal-free QLEDs. Then, we describe patterning techniques for individual RGB QDs to fabricate pixelated displays. Finally, we briefly summarize applications of such QLEDs, presenting the possibility of full-color QLED-based displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA