Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(15): 11715-11721, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563514

RESUMO

To understand the alkali-metal-dependent material properties of recently discovered AV3Sb5 (A = K, Rb, and Cs), we conducted a detailed electronic structure analysis based on first-principles density functional theory calculations. Contrary to the case of A = K and Rb, the energetic positions of the low-lying Van Hove singularities are reversed in CsV3Sb5, and the characteristic higher-order Van Hove point gets closer to the Fermi level. We found that this notable difference can be attributed to the chemical effect, apart from structural differences. Due to their different orbital compositions, Van Hove points show qualitatively different responses to the structure changes. A previously unnoticed highest lying point can be lowered, locating close to or even below the other ones in response to a reasonable range of bi- and uni-axial strain. Our results can be useful in better understanding the material-dependent features reported in this family and in realizing experimental control of exotic quantum phases.

2.
Adv Mater ; 36(31): e2402040, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38798189

RESUMO

Topological quantum phases are largely understood in weakly correlated systems, which have identified various quantum phenomena, such as the spin Hall effect, protected transport of helical fermions, and topological superconductivity. Robust ferromagnetic order in correlated topological materials particularly attracts attention, as it can provide a versatile platform for novel quantum devices. Here, a singular Hall response arising from a unique band structure of flat topological nodal lines in combination with electron correlation in a van der Waals ferromagnetic semimetal, Fe3GaTe2, with a high Curie temperature of Tc = 347 K is reported. High anomalous Hall conductivity violating the conventional scaling, resistivity upturn at low temperature, and a large Sommerfeld coefficient are observed in Fe3GaTe2, which implies heavy fermion features in this ferromagnetic topological material. The scanning tunneling microscopy, circular dichroism in angle-resolved photoemission spectroscopy, and theoretical calculations support the original electronic features of the material. Thus, low-dimensional Fe3GaTe2 with electronic correlation, topology, and room-temperature ferromagnetic order appears to be a promising candidate for robust quantum devices.

3.
Adv Sci (Weinh) ; : e2403463, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962927

RESUMO

In this study, a novel synthesis of ultrathin, highly uniform colloidal bismuth sulfohalide (BiSX where X = Cl, Br, I) nanowires (NWs) and NW bundles (NBs) for room-temperature and solution-processed flexible photodetectors are presented. High-aspect-ratio bismuth sulfobromide (BiSBr) NWs are synthesized via a heat-up method using bismuth bromide and elemental S as precursors and 1-dodecanethiol as a solvent. Bundling of the BiSBr NWs occurs upon the addition of 1-octadecene as a co-solvent. The morphologies of the BiSBr NBs are easily tailored from sheaf-like structures to spherulite nanostructures by changing the solvent ratio. The optical bandgaps are modulated from 1.91 (BiSCl) and 1.88 eV (BiSBr) to 1.53 eV (BiSI) by changing the halide compositions. The optical bandgap of the ultrathin BiSBr NWs and NBs exhibits blueshift, whose origin is investigated through density functional theory-based first-principles calculations. Visible-light photodetectors are fabricated using BiSBr NWs and NBs via solution-based deposition followed by solid-state ligand exchanges. High photo-responsivities and external quantum efficiencies (EQE) are obtained for BiSBr NW and NB films even under strain, which offer a unique opportunity for the application of the novel BiSX NWs and NBs in flexible and environmentally friendly optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA