Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 178(6): 1287-1298, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491383

RESUMO

The genetic architecture of autism spectrum disorder (ASD) is itself a diverse allelic spectrum that consists of rare de novo or inherited variants in hundreds of genes and common polygenic risk at thousands of loci. ASD susceptibility genes are interconnected at the level of transcriptional and protein networks, and many function as genetic regulators of neurodevelopment or synaptic proteins that regulate neural activity. So that the core underlying neuropathologies can be further elucidated, we emphasize the importance of first defining subtypes of ASD on the basis of the phenotypic signatures of genes in model systems and humans.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Herança Multifatorial/genética , Animais , Células Cultivadas , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Redes Reguladoras de Genes , Humanos , Neurogênese
2.
Cell ; 164(4): 805-17, 2016 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-26871637

RESUMO

While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms").


Assuntos
Processamento Alternativo , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo , Animais , Clonagem Molecular , Evolução Molecular , Humanos , Modelos Moleculares , Fases de Leitura Aberta , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteoma/análise
3.
Cell ; 151(7): 1431-42, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260136

RESUMO

De novo mutation plays an important role in autism spectrum disorders (ASDs). Notably, pathogenic copy number variants (CNVs) are characterized by high mutation rates. We hypothesize that hypermutability is a property of ASD genes and may also include nucleotide-substitution hot spots. We investigated global patterns of germline mutation by whole-genome sequencing of monozygotic twins concordant for ASD and their parents. Mutation rates varied widely throughout the genome (by 100-fold) and could be explained by intrinsic characteristics of DNA sequence and chromatin structure. Dense clusters of mutations within individual genomes were attributable to compound mutation or gene conversion. Hypermutability was a characteristic of genes involved in ASD and other diseases. In addition, genes impacted by mutations in this study were associated with ASD in independent exome-sequencing data sets. Our findings suggest that regional hypermutation is a significant factor shaping patterns of genetic variation and disease risk in humans.


Assuntos
Transtorno Autístico/genética , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa , Taxa de Mutação , Animais , Linhagem Celular , Éxons , Feminino , Humanos , Masculino , Idade Materna , Pan troglodytes/genética , Idade Paterna , Análise de Sequência de DNA , Gêmeos Monozigóticos
4.
Cell ; 134(3): 534-45, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18692475

RESUMO

Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or "interactome" networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early-embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms.


Assuntos
Caenorhabditis elegans/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Mapeamento de Interação de Proteínas , Animais , Divisão Celular , Domínios e Motivos de Interação entre Proteínas , Proteoma , Técnicas do Sistema de Duplo-Híbrido
5.
Hum Genet ; 141(10): 1595-1613, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34549350

RESUMO

Whole-exome and whole-genome sequencing studies in autism spectrum disorder (ASD) have identified hundreds of thousands of exonic variants. Only a handful of them, primarily loss-of-function variants, have been shown to increase the risk for ASD, while the contributory roles of other variants, including most missense variants, remain unknown. New approaches that combine tissue-specific molecular profiles with patients' genetic data can thus play an important role in elucidating the functional impact of exonic variation and improve understanding of ASD pathogenesis. Here, we integrate spatio-temporal gene co-expression networks from the developing human brain and protein-protein interaction networks to first reach accurate prioritization of ASD risk genes based on their connectivity patterns with previously known high-confidence ASD risk genes. We subsequently integrate these gene scores with variant pathogenicity predictions to further prioritize individual exonic variants based on the positive-unlabeled learning framework with gene- and variant-score calibration. We demonstrate that this approach discriminates among variants between cases and controls at the high end of the prediction range. Finally, we experimentally validate our top-scoring de novo mutation NP_001243143.1:p.Phe309Ser in the sodium/potassium-transporting ATPase ATP1A3 to disrupt protein binding with different partners.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Predisposição Genética para Doença , Humanos , Mutação , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
6.
Mol Psychiatry ; 26(12): 7560-7580, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34433918

RESUMO

Reciprocal deletion and duplication of the 16p11.2 region is the most common copy number variation (CNV) associated with autism spectrum disorders. We generated cortical organoids from skin fibroblasts of patients with 16p11.2 CNV to investigate impacted neurodevelopmental processes. We show that organoid size recapitulates macrocephaly and microcephaly phenotypes observed in the patients with 16p11.2 deletions and duplications. The CNV dosage affects neuronal maturation, proliferation, and synapse number, in addition to its effect on organoid size. We demonstrate that 16p11.2 CNV alters the ratio of neurons to neural progenitors in organoids during early neurogenesis, with a significant excess of neurons and depletion of neural progenitors observed in deletions. Transcriptomic and proteomic profiling revealed multiple pathways dysregulated by the 16p11.2 CNV, including neuron migration, actin cytoskeleton, ion channel activity, synaptic-related functions, and Wnt signaling. The level of the active form of small GTPase RhoA was increased in both, deletions and duplications. Inhibition of RhoA activity rescued migration deficits, but not neurite outgrowth. This study provides insights into potential neurobiological mechanisms behind the 16p11.2 CNV during neocortical development.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA/genética , Humanos , Neurogênese/genética , Organoides , Proteômica
7.
Mol Psychiatry ; 26(7): 3586-3613, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33727673

RESUMO

E3-ubiquitin ligase Cullin3 (Cul3) is a high confidence risk gene for autism spectrum disorder (ASD) and developmental delay (DD). To investigate how Cul3 mutations impact brain development, we generated a haploinsufficient Cul3 mouse model using CRISPR/Cas9 genome engineering. Cul3 mutant mice exhibited social and cognitive deficits and hyperactive behavior. Brain MRI found decreased volume of cortical regions and changes in many other brain regions of Cul3 mutant mice starting from early postnatal development. Spatiotemporal transcriptomic and proteomic profiling of embryonic, early postnatal and adult brain implicated neurogenesis and cytoskeletal defects as key drivers of Cul3 functional impact. Specifically, dendritic growth, filamentous actin puncta, and spontaneous network activity were reduced in Cul3 mutant mice. Inhibition of small GTPase RhoA, a molecular substrate of Cul3 ligase, rescued dendrite length and network activity phenotypes. Our study identified defects in neuronal cytoskeleton and Rho signaling as the primary targets of Cul3 mutation during brain development.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Proteínas Culina/genética , Citoesqueleto , Células Germinativas , Haploinsuficiência/genética , Camundongos , Neurogênese/genética , Proteômica
8.
PLoS Comput Biol ; 15(6): e1007112, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199787

RESUMO

Differentiation between phenotypically neutral and disease-causing genetic variation remains an open and relevant problem. Among different types of variation, non-frameshifting insertions and deletions (indels) represent an understudied group with widespread phenotypic consequences. To address this challenge, we present a machine learning method, MutPred-Indel, that predicts pathogenicity and identifies types of functional residues impacted by non-frameshifting insertion/deletion variation. The model shows good predictive performance as well as the ability to identify impacted structural and functional residues including secondary structure, intrinsic disorder, metal and macromolecular binding, post-translational modifications, allosteric sites, and catalytic residues. We identify structural and functional mechanisms impacted preferentially by germline variation from the Human Gene Mutation Database, recurrent somatic variation from COSMIC in the context of different cancers, as well as de novo variants from families with autism spectrum disorder. Further, the distributions of pathogenicity prediction scores generated by MutPred-Indel are shown to differentiate highly recurrent from non-recurrent somatic variation. Collectively, we present a framework to facilitate the interrogation of both pathogenicity and the functional effects of non-frameshifting insertion/deletion variants. The MutPred-Indel webserver is available at http://mutpred.mutdb.org/.


Assuntos
Predisposição Genética para Doença/genética , Genoma Humano , Mutação INDEL , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Biologia Computacional , Bases de Dados Genéticas , Genoma Humano/genética , Genoma Humano/fisiologia , Humanos , Mutação INDEL/genética , Mutação INDEL/fisiologia , Aprendizado de Máquina , Curva ROC
9.
Am J Hum Genet ; 98(4): 667-79, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27018473

RESUMO

Genetic studies of autism spectrum disorder (ASD) have established that de novo duplications and deletions contribute to risk. However, ascertainment of structural variants (SVs) has been restricted by the coarse resolution of current approaches. By applying a custom pipeline for SV discovery, genotyping, and de novo assembly to genome sequencing of 235 subjects (71 affected individuals, 26 healthy siblings, and their parents), we compiled an atlas of 29,719 SV loci (5,213/genome), comprising 11 different classes. We found a high diversity of de novo mutations, the majority of which were undetectable by previous methods. In addition, we observed complex mutation clusters where combinations of de novo SVs, nucleotide substitutions, and indels occurred as a single event. We estimate a high rate of structural mutation in humans (20%) and propose that genetic risk for ASD is attributable to an elevated frequency of gene-disrupting de novo SVs, but not an elevated rate of genome rearrangement.


Assuntos
Transtorno do Espectro Autista/genética , Deleção de Genes , Duplicação Gênica , Alelos , Sequência de Aminoácidos , Sequência de Bases , Estudos de Casos e Controles , Criança , Variações do Número de Cópias de DNA , Feminino , Frequência do Gene , Rearranjo Gênico , Loci Gênicos , Genoma Humano , Técnicas de Genotipagem , Humanos , Mutação INDEL , Masculino , Análise em Microsséries , Dados de Sequência Molecular , Linhagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Bioinformatics ; 33(14): i389-i398, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28882004

RESUMO

MOTIVATION: Loss-of-function genetic variants are frequently associated with severe clinical phenotypes, yet many are present in the genomes of healthy individuals. The available methods to assess the impact of these variants rely primarily upon evolutionary conservation with little to no consideration of the structural and functional implications for the protein. They further do not provide information to the user regarding specific molecular alterations potentially causative of disease. RESULTS: To address this, we investigate protein features underlying loss-of-function genetic variation and develop a machine learning method, MutPred-LOF, for the discrimination of pathogenic and tolerated variants that can also generate hypotheses on specific molecular events disrupted by the variant. We investigate a large set of human variants derived from the Human Gene Mutation Database, ClinVar and the Exome Aggregation Consortium. Our prediction method shows an area under the Receiver Operating Characteristic curve of 0.85 for all loss-of-function variants and 0.75 for proteins in which both pathogenic and neutral variants have been observed. We applied MutPred-LOF to a set of 1142 de novo vari3ants from neurodevelopmental disorders and find enrichment of pathogenic variants in affected individuals. Overall, our results highlight the potential of computational tools to elucidate causal mechanisms underlying loss of protein function in loss-of-function variants. AVAILABILITY AND IMPLEMENTATION: http://mutpred.mutdb.org. CONTACT: predrag@indiana.edu.


Assuntos
Mutação com Perda de Função , Aprendizado de Máquina , Proteínas/genética , Análise de Sequência de Proteína/métodos , Software , Biologia Computacional/métodos , Humanos , Conformação Proteica , Proteínas/metabolismo , Proteínas/fisiologia
12.
Nature ; 471(7339): 499-503, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21346763

RESUMO

Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.


Assuntos
Variações do Número de Cópias de DNA/genética , Genes Duplicados/genética , Predisposição Genética para Doença/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Esquizofrenia/genética , Linhagem Celular , Cromossomos Humanos Par 7/genética , Estudos de Coortes , AMP Cíclico/metabolismo , Feminino , Dosagem de Genes/genética , Estudo de Associação Genômica Ampla , Humanos , Padrões de Herança/genética , Masculino , Linhagem , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Reprodutibilidade dos Testes , Esquizofrenia/metabolismo , Transdução de Sinais , Transcrição Gênica/genética
13.
Nature ; 470(7332): 59-65, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293372

RESUMO

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.


Assuntos
Variações do Número de Cópias de DNA/genética , Genética Populacional , Genoma Humano/genética , Genômica , Duplicação Gênica/genética , Predisposição Genética para Doença/genética , Genótipo , Humanos , Mutagênese Insercional/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Deleção de Sequência/genética
14.
Phys Chem Chem Phys ; 16(14): 6480-5, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24605363

RESUMO

IκBα inhibits the transcription factor, NFκB, by forming a very tightly bound complex in which the ankyrin repeat domain (ARD) of IκBα interacts primarily with the dimerization domain of NFκB. The first four ankyrin repeats (ARs) of the IκBα ARD are well-folded, but the AR5-6 region is intrinsically disordered according to amide H/D exchange and protein folding/unfolding experiments. We previously showed that mutations towards the consensus sequence for stable ankyrin repeats resulted in a "prefolded" mutant. To investigate whether the consensus mutations were solely able to order the AR5-6 region, we used a predictor of protein disordered regions PONDR VL-XT to select mutations that would alter the intrinsic disorder towards a more ordered structure (D → O mutants). The algorithm predicted two mutations, E282W and P261F, neither of which correspond to the consensus sequence for ankyrin repeats. Amide exchange and CD were used to assess ordering. Although only the E282W was predicted to be more ordered by CD and amide exchange, stopped-flow fluorescence studies showed that both of the D → O mutants were less efficient at dissociating NFκB from DNA.


Assuntos
Proteínas I-kappa B/química , Algoritmos , Substituição de Aminoácidos , Animais , Dicroísmo Circular , DNA/química , DNA/metabolismo , Medição da Troca de Deutério , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Cinética , Inibidor de NF-kappaB alfa , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
15.
PLoS Comput Biol ; 8(10): e1002709, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055912

RESUMO

The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions (IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7-2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study offer a new perspective on the role of mutations in disease, with implications for improving predictors of the functional impact of missense mutations.


Assuntos
Doença/genética , Modelos Genéticos , Mutação , Proteínas/genética , Arginina/genética , Análise por Conglomerados , Biologia Computacional , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição , Proteínas Supressoras de Tumor
16.
Transl Psychiatry ; 13(1): 58, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36792602

RESUMO

The past decade has yielded much success in the identification of risk genes for Autism Spectrum Disorder (ASD), with many studies implicating loss-of-function (LoF) mutations within these genes. Despite this, no significant clinical advances have been made so far in the development of therapeutics for ASD. Given the role of LoF mutations in ASD etiology, many of the therapeutics in development are designed to rescue the haploinsufficient effect of genes at the transcriptional, translational, and protein levels. This review will discuss the various therapeutic techniques being developed from each level of the central dogma with examples including: CRISPR activation (CRISPRa) and gene replacement at the DNA level, antisense oligonucleotides (ASOs) at the mRNA level, and small-molecule drugs at the protein level, followed by a review of current delivery methods for these therapeutics. Since central nervous system (CNS) penetrance is of utmost importance for ASD therapeutics, it is especially necessary to evaluate delivery methods that have higher efficiency in crossing the blood-brain barrier (BBB).


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Transtorno do Espectro Autista/metabolismo , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Biologia Molecular
17.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747841

RESUMO

PTEN dysfunction, caused by loss of lipid phosphatase activity or deletion, promotes pathologies, cancer, benign tumors, and neurodevelopmental disorders (NDDs). Despite efforts, exactly how the mutations trigger distinct phenotypic outcomes, cancer or NDD, has been puzzling. It has also been unclear how to distinguish between mutations harbored by isoforms, are they cancer or NDDs-related. Here we address both. We demonstrate that PTEN mutations differentially allosterically bias P-loop dynamics and its connection to the catalytic site, affecting catalytic activity. NDD-related mutations are likely to sample conformations present in the wild-type, while sampled conformations sheltering cancer-related hotspots favor catalysis-prone conformations, suggesting that NDD mutations are weaker. Analysis of isoform expression data indicates that if the transcript has NDD-related mutations, alone or in combination with cancer hotspots, there is high prenatal expression. If no mutations within the measured days, low expression levels. Cancer mutations promote stronger signaling and cell proliferation; NDDs' are weaker, influencing brain cell differentiation. Further, exon 5 is impacted by NDD or non-NDD mutations, while exon 7 is exclusively impacted by NDD mutations. Our comprehensive conformational and genomic analysis helps discover how same allele mutations can foster different clinical manifestations and uncovers correlations of splicing isoform expression to life expectancy.

18.
J Mol Biol ; 435(24): 168354, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37935253

RESUMO

Mutations causing loss of PTEN lipid phosphatase activity can promote cancer, benign tumors (PHTS), and neurodevelopmental disorders (NDDs). Exactly how they preferentially trigger distinct phenotypic outcomes has been puzzling. Here, we demonstrate that PTEN mutations differentially allosterically bias P loop dynamics and its connection to the catalytic site, affecting catalytic activity. NDD-related mutations are likely to sample conformations of the functional wild-type state, while sampled conformations for the strong, cancer-related driver mutation hotspots favor catalysis-primed conformations, suggesting that NDD mutations are likely to be weaker, and our large-scale simulations show why. Prenatal PTEN isoform expression data suggest exons 5 and 7, which harbor NDD mutations, as cancer-risk carriers. Since cancer requires more than a single mutation, our conformational and genomic analysis helps discover how same protein mutations can foster different clinical manifestations, articulates a role for co-occurring background latent driver mutations, and uncovers relationships of splicing isoform expression to life expectancy.


Assuntos
Transtorno Autístico , Encéfalo , Neoplasias , PTEN Fosfo-Hidrolase , Humanos , Transtorno Autístico/genética , Encéfalo/enzimologia , Mutação , Neoplasias/genética , Isoformas de Proteínas/genética , PTEN Fosfo-Hidrolase/genética
19.
Pac Symp Biocomput ; 28: 323-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36540988

RESUMO

The accurate interpretation of genetic variants is essential for clinical actionability. However, a majority of variants remain of uncertain significance. Multiplexed assays of variant effects (MAVEs), can help provide functional evidence for variants of uncertain significance (VUS) at the scale of entire genes. Although the systematic prioritization of genes for such assays has been of great interest from the clinical perspective, existing strategies have rarely emphasized this motivation. Here, we propose three objectives for quantifying the importance of genes each satisfying a specific clinical goal: (1) Movability scores to prioritize genes with the most VUS moving to non-VUS categories, (2) Correction scores to prioritize genes with the most pathogenic and/or benign variants that could be reclassified, and (3) Uncertainty scores to prioritize genes with VUS for which variant pathogenicity predictors used in clinical classification exhibit the greatest uncertainty. We demonstrate that existing approaches are sub-optimal when considering these explicit clinical objectives. We also propose a combined weighted score that optimizes the three objectives simultaneously and finds optimal weights to improve over existing approaches. Our strategy generally results in better performance than existing knowledge-driven and data-driven strategies and yields gene sets that are clinically relevant. Our work has implications for systematic efforts that aim to iterate between predictor development, experimentation and translation to the clinic.


Assuntos
Predisposição Genética para Doença , Testes Genéticos , Humanos , Testes Genéticos/métodos , Variação Genética , Biologia Computacional/métodos
20.
Nat Genet ; 54(9): 1284-1292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654974

RESUMO

The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads of rare and polygenic risk are inversely correlated in cases and greater in females than in males, consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare inherited variants and polygenic scores were associated with various dimensions of symptom severity in children and parents. Parental age effects on risk for ASD in offspring were attributable to a combination of genetic mechanisms, including DNMs that accumulate in the paternal germline and inherited risk that influences behavior in parents. Genes implicated by rare variants were enriched in excitatory and inhibitory neurons compared with genes implicated by common variants. Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic factors that impact different neurodevelopmental processes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Criança , Família , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Herança Multifatorial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA