RESUMO
The "omnigenic" hypothesis postulates that the polygenic effects of common SNPs on a typical complex trait are mediated through trans-effects on expression of a relatively sparse set of effector ("core") genes. We tested this hypothesis in a study of 4,964 cases of type 1 diabetes (T1D) and 7,497 controls by using summary statistics to calculate aggregated (excluding the HLA region) trans-scores for gene expression in blood. From associations of T1D with aggregated trans-scores, nine putative core genes were identified, of which three-STAT1, CTLA4 and FOXP3-are genes in which variants cause monogenic forms of autoimmune diabetes. Seven of these genes affect the activity of regulatory T cells, and two are involved in immune responses to microbial lipids. Four T1D-associated genomic regions could be identified as master regulators via trans-effects on gene expression. These results support the sparse effector hypothesis and reshape our understanding of the genetic architecture of T1D.
Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Herança Multifatorial , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
OBJECTIVE: Genome-wide association studies have successfully identified more than 100 loci associated with susceptibility to rheumatoid arthritis (RA). However, our understanding of the functional effects of genetic variants in causing RA and their effects on disease severity and response to treatment remains limited. METHODS: In this study, we conducted expression quantitative trait locus (eQTL) analysis to dissect the link between genetic variants and gene expression comparing the disease tissue against blood using RNA-Sequencing of synovial biopsies (n=85) and blood samples (n=51) from treatment-naïve patients with RA from the Pathobiology of Early Arthritis Cohort. RESULTS: This identified 898 eQTL genes in synovium and genes loci in blood, with 232 genes in common to both synovium and blood, although notably many eQTL were tissue specific. Examining the HLA region, we uncovered a specific eQTL at HLA-DPB2 with the critical triad of single-nucleotide polymorphisms (SNPs) rs3128921 driving synovial HLA-DPB2 expression, and both rs3128921 and HLA-DPB2 gene expression correlating with clinical severity and increasing probability of the lympho-myeloid pathotype. CONCLUSIONS: This analysis highlights the need to explore functional consequences of genetic associations in disease tissue. HLA-DPB2 SNP rs3128921 could potentially be used to stratify patients to more aggressive treatment immediately at diagnosis.
Assuntos
Artrite Reumatoide , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Predisposição Genética para Doença , Genótipo , Estudo de Associação Genômica Ampla , Artrite Reumatoide/tratamento farmacológico , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND AND AIMS: Genome-wide association studies (GWAS) have identified several risk loci for gallstone disease. As with most polygenic traits, it is likely that many genetic determinants are undiscovered. The aim of this study was to identify genetic variants that represent new targets for gallstone research and treatment. APPROACH AND RESULTS: We performed a GWAS of 28,627 gallstone cases and 348,373 controls in the UK Biobank, replicated findings in a Scottish cohort (1089 cases, 5228 controls), and conducted a GWA meta-analysis (43,639 cases, 506,798 controls) with the FinnGen cohort. We assessed pathway enrichment using gene-based then gene-set analysis and tissue expression of identified genes in Genotype-Tissue Expression project data. We constructed a polygenic risk score (PRS) and evaluated phenotypic traits associated with the score. Seventy-five risk loci were identified (p < 5 × 10-8 ), of which 46 were new. Pathway enrichment revealed associations with lipid homeostasis, glucuronidation, phospholipid metabolism, and gastrointestinal motility. Anoctamin 1 (ANO1) and transmembrane Protein 147 (TMEM147), both in novel, replicated loci, are expressed in the gallbladder and gastrointestinal tract. Both regulate gastrointestinal motility. The gallstone risk allele rs7599-A leads to suppression of hepatic TMEM147 expression, suggesting that the protein protects against gallstone formation. The highest decile of the PRS demonstrated a 6-fold increased odds of gallstones compared with the lowest decile. The PRS was strongly associated with increased body mass index, serum liver enzymes, and C-reactive protein concentrations, and decreased lipoprotein cholesterol concentrations. CONCLUSIONS: This GWAS demonstrates the polygenic nature of gallstone risk and identifies 46 novel susceptibility loci. We implicate genes influencing gastrointestinal motility in the pathogenesis of gallstones.
Assuntos
Cálculos Biliares , Estudo de Associação Genômica Ampla , Cálculos Biliares/genética , Cálculos Biliares/metabolismo , Motilidade Gastrointestinal , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único , População BrancaRESUMO
The heterogeneity of systemic lupus erythematosus (SLE) can be explained by epigenetic alterations that disrupt transcriptional programs mediating environmental and genetic risk. This study evaluated the epigenetic contribution to SLE heterogeneity considering molecular and serological subtypes, genetics and transcriptional status, followed by drug target discovery. We performed a stratified epigenome-wide association studies of whole blood DNA methylation from 213 SLE patients and 221 controls. Methylation quantitative trait loci analyses, cytokine and transcription factor activity - epigenetic associations and methylation-expression correlations were conducted. New drug targets were searched for based on differentially methylated genes. In a stratified approach, a total of 974 differential methylation CpG sites with dependency on molecular subtypes and autoantibody profiles were found. Mediation analyses suggested that SLE-associated SNPs in the HLA region exert their risk through DNA methylation changes. Novel genetic variants regulating DNAm in disease or in specific molecular contexts were identified. The epigenetic landscapes showed strong association with transcription factor activity and cytokine levels, conditioned by the molecular context. Epigenetic signals were enriched in known and novel drug targets for SLE. This study reveals possible genetic drivers and consequences of epigenetic variability on SLE heterogeneity and disentangles the DNAm mediation role on SLE genetic risk and novel disease-specific meQTLs. Finally, novel targets for drug development were discovered.