Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Pharmacol Res ; 205: 107231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815878

RESUMO

We previously demonstrated that mice carrying natural mtDNA variants of the FVB/NJ strain (m.7778 G>T in the mt-Atp8 gene in mitochondrial complex V), namely C57BL/6 J-mtFVB/NJ (B6-mtFVB), exhibited (i) partial protection from experimental skin inflammatory diseases in an anti-murine type VII collagen antibody-induced skin inflammation model and psoriasiform dermatitis model; (ii) significantly altered metabolites, including short-chain fatty acids, according to targeted metabolomics of liver, skin and lymph node samples; and (iii) a differential composition of the gut microbiota according to bacterial 16 S rRNA gene sequencing of stool samples compared to wild-type C57BL/6 J (B6) mice. To further dissect these disease-contributing factors, we induced an experimental antibody-induced skin inflammatory disease in gnotobiotic mice. We performed shotgun metagenomic sequencing of caecum contents and untargeted metabolomics of liver, CD4+ T cell, and caecum content samples from conventional B6-mtFVB and B6 mice. We identified D-glucosamine as a candidate mediator that ameliorated disease severity in experimental antibody-induced skin inflammation by modulating immune cell function in T cells, neutrophils and macrophages. Because mice carrying mtDNA variants of the FVB/NJ strain show differential disease susceptibility to a wide range of experimental diseases, including diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice and collagen antibody-induced arthritis in DBA/1 J mice, this experimental approach is valuable for identifying novel therapeutic options for skin inflammatory conditions and other chronic inflammatory diseases to which mice carrying specific mtDNA variants show differential susceptibility.


Assuntos
DNA Mitocondrial , Camundongos Endogâmicos C57BL , Animais , DNA Mitocondrial/genética , Microbioma Gastrointestinal , Camundongos , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Dermatite/imunologia , Dermatite/microbiologia , Dermatite/genética , Dermatite/tratamento farmacológico , Dermatite/metabolismo , Inflamação/genética , Inflamação/imunologia , Modelos Animais de Doenças , Masculino , Vida Livre de Germes , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/genética , Ceco/microbiologia , Doença Crônica , Feminino
2.
J Pathol ; 261(2): 184-197, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37565309

RESUMO

Psoriasis is a chronic inflammatory skin condition. Repeated epicutaneous application of Aldara® (imiquimod) cream results in psoriasiform dermatitis in mice. The Aldara®-induced psoriasiform dermatitis (AIPD) mouse model has been used to examine the pathogenesis of psoriasis. Here, we used a forward genetics approach in which we compared AIPD that developed in 13 different inbred mouse strains to identify genes and pathways that modulated disease severity. Among our primary results, we found that the severity of AIPD differed substantially between different strains of inbred mice and that these variations were associated with polymorphisms in Itga11. The Itga11 gene encodes the integrin α11 subunit that heterodimerizes with the integrin ß1 subunit to form integrin α11ß1. Less information is available about the function of ITGA11 in skin inflammation; however, a role in the regulation of cutaneous wound healing, specifically the development of dermal fibrosis, has been described. Experiments performed with Itga11 gene-deleted (Itga11-/- ) mice revealed that the integrin α11 subunit contributes substantially to the clinical phenotype as well as the histopathological and molecular findings associated with skin inflammation characteristic of AIPD. Although the skin transcriptomes of Itga11-/- and WT mice do not differ from one another under physiological conditions, distinct transcriptomes emerge in these strains in response to the induction of AIPD. Most of the differentially expressed genes contributed to extracellular matrix organization, immune system, and metabolism of lipids pathways. Consistent with these findings, we detected a reduced number of fibroblasts and inflammatory cells, including macrophages, T cells, and tissue-resident memory T cells in skin samples from Itga11-/- mice in response to AIPD induction. Collectively, our results reveal that Itga11 plays a critical role in promoting skin inflammation in AIPD and thus might be targeted for the development of novel therapeutics for psoriasiform skin conditions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Dermatite , Cadeias alfa de Integrinas , Psoríase , Animais , Camundongos , Dermatite/genética , Dermatite/patologia , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Inflamação/patologia , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Psoríase/induzido quimicamente , Psoríase/genética , Pele/patologia
3.
Med Sci Monit ; 30: e944310, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840416

RESUMO

Prosthodontics is a dental subspecialty that includes the preparation of dental prosthetics for missing or damaged teeth. It increasingly uses computer-assisted technologies for planning and preparing dental prosthetics. This study aims to present the findings from a systematic review of publications on artificial intelligence (AI) in prosthodontics to identify current trends and future opportunities. The review question was "What are the applications of AI in prosthodontics and how good is their performance in prosthodontics?" Electronic searching in the Web of Science, ScienceDirect, PubMed, and Cochrane Library was conducted. The search was limited to full text from January 2012 to January 2024. Quadas-2 was used for assessing quality and potential risk of bias for the selected studies. A total of 1925 studies were identified in the initial search. After removing the duplicates and applying exclusion criteria, a total of 30 studies were selected for this review. Results of the Quadas-2 assessment of included studies found that a total of 18.3% of studies were identified as low risk of bias studies, whereas 52.6% and 28.9% of included studies were identified as studies with high and unclear risk of bias, respectively. Although they are still developing, AI models have already shown promise in the areas of dental charting, tooth shade selection, automated restoration design, mapping the preparation finishing line, manufacturing casting optimization, predicting facial changes in patients wearing removable prostheses, and designing removable partial dentures.


Assuntos
Inteligência Artificial , Prostodontia , Inteligência Artificial/tendências , Humanos , Prostodontia/métodos , Prostodontia/tendências , Prótese Dentária
4.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162979

RESUMO

We recently reported on two mouse strains carrying different single nucleotide variations in the mitochondrial complex I gene, i.e., B6-mtBPL mice carrying m.11902T>C and B6-mtALR carrying m.4738C>A. B6-mtBPL mice exhibited a longer lifespan and a lower metabolic disease susceptibility despite mild mitochondrial functional differences in steady-state. As natural polymorphisms in the mitochondrial DNA (mtDNA) are known to be associated with distinct patterns of gut microbial composition, we further investigated the gut microbiota composition in these mice strains. In line with mouse phenotypes, we found a significantly lower abundance of Proteobacteria, which is positively associated with pathological conditions, in B6-mtBPL compared to B6-mtALR mice. A prediction of functional profile of significantly differential bacterial genera between these strains revealed an involvement of glucose metabolism pathways. Whole transcriptome analysis of liver samples from B6-mtBPL and B6-mtALR mice confirmed these findings. Thus, both host gene expression and gut microbial changes caused by the mtDNA variant differences may contribute to the ageing and metabolic phenotypes observed in these mice strains. Since gut microbiota are easier to modulate, compared with mtDNA variants, identification of such mtDNA variants, specific gut bacterial species and bacterial metabolites may be a potential intervention to modulate common diseases, which are differentially susceptible to individuals with different mtDNA variants.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Microbioma Gastrointestinal/genética , Longevidade , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Mitocôndrias/metabolismo
5.
J Autoimmun ; 123: 102705, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34325306

RESUMO

BACKGROUND: Pemphigus is a group of bullous diseases characterized by acantholysis and skin blisters. As for other autoimmune diseases, the strongest genetic associations found so far for pemphigus foliaceus (PF) and vulgaris (PV) are with alleles of HLA genes. However, apart from protein-coding genes, the MHC region includes a set of poorly explored long non-coding RNA (lncRNA) genes, the HLA complex group (HCG). OBJECTIVES: To investigate if HCG lncRNA alleles are associated with pemphigus susceptibility. METHODS AND RESULTS: We analyzed SNPs in 13 HCG lncRNA genes, both in PV (Germany: 241 patients; 1,188 controls) and endemic PF (Brazil: 227 patients; 194 controls), applying multivariate logistic regression. We found 55 associations with PV (pcorr < 0.01) and nine with endemic PF (pcorr < 0.05), the majority located in TSBP1-AS1 (which includes HCG23) and HCG27 lncRNA genes, independently of HLA alleles previously associated with pemphigus. The association of TSBP1-AS1 rs3129949*A allele was further replicated in sporadic PF (p = 0.027, OR = 0.054; 75 patients and 150 controls, all from Germany). Next, we evaluated the expression levels of TSBP1-AS1, TSBP1, HCG23, and HCG27 in blood mononuclear cells of Brazilian patients and controls. HCG27 was upregulated in endemic PF (p = 0.035, log2 FC = 1.3), while TSBP1-AS1 was downregulated in PV (p = 0.029, log2 FC = -1.29). The same expression patterns were also seen in cultured keratinocytes stimulated with IgG antibodies from patients and controls from Germany. TSBP1 mRNA levels were also decreased in endemic PF blood cells (p = 0.042, log2 FC = -2.14). TSBP1-AS1 and HCG27 were also observed downregulated in CD19+ cells of endemic PF (p < 0.01, log2 FC = -0.226 and -0.46 respectively). CONCLUSIONS: HCG lncRNAs are associated with susceptibility to pemphigus, being TSBP1-AS1 and HCG27 also differentially expressed in distinct cell populations. These results suggest a role for HCG lncRNAs in pemphigus autoimmunity.


Assuntos
Antígenos HLA/genética , Pênfigo/genética , Pênfigo/imunologia , RNA Longo não Codificante/fisiologia , Humanos , Queratinócitos/imunologia , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único
6.
Exp Dermatol ; 30(6): 831-840, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33394553

RESUMO

Pemphigus foliaceus (PF) is an autoimmune blistering disease of the skin, clinically characterized by erosions and, histopathologically, by acantholysis. PF is endemic in the Brazilian Central-Western region. Numerous single nucleotide polymorphisms (SNPs) have been shown to affect the susceptibility for PF, including SNPs at long non-coding RNA (lncRNA) genes, which are known to participate in many physiological and pathogenic processes, such as autoimmunity. Here, we investigated whether the genetic variation of immune-related lncRNA genes affects the risk for endemic and sporadic forms of PF. We analysed 692 novel SNPs for PF from 135 immune-related lncRNA genes in 227 endemic PF patients and 194 controls. The SNPs were genotyped by Illumina microarray and analysed by applying logistic regression at additive model, with correction for sex and population structure. Six associated SNPs were also evaluated in an independent German cohort of 76 sporadic PF patients and 150 controls. Further, we measured the expression levels of two associated lncRNA genes (LINC-PINT and LY86-AS1) by quantitative PCR, stratified by genotypes, in peripheral blood mononuclear cells of healthy subjects. We found 27 SNPs in 11 lncRNA genes associated with endemic PF (p < .05 without overlapping with protein-coding genes). Among them, the LINC-PINT SNP rs10228040*A (OR = 1.47, p = .012) was also associated with increased susceptibility for sporadic PF (OR = 2.28, p = .002). Moreover, the A+ carriers of LY86-AS1*rs12192707 mark lowest LY86-AS1 RNA levels, which might be associated with a decreasing autoimmune response. Our results suggest a critical role of lncRNA variants in immunopathogenesis of both PF endemic and sporadic forms.


Assuntos
Antígenos de Superfície/genética , Pênfigo/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Antígenos de Superfície/imunologia , Predisposição Genética para Doença , Humanos , Pênfigo/imunologia , Polimorfismo de Nucleotídeo Único/imunologia , RNA Longo não Codificante/imunologia
7.
Pharmacol Res ; 170: 105724, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116209

RESUMO

Telmisartan prevents diet-induced obesity (DIO) in rodents. Given that the precise underlying mechanism is not known, we examined whether a gut-related mechanism might be involved. Sprague-Dawley rats received cafeteria diet (CD) for 3 months to develop DIO and were administered either telmisartan (8 mg/kgbw) or vehicle. In addition, pair-fed (PF) rats received CD adjusted to TEL and control rats (CON) only received chow. Stool samples were analysed by 16 S rRNA gene amplicon sequencing. CD-fed rats became obese while TEL, PF and CON rats remained lean. Alpha diversity analyses indicated that bacterial diversity was similar before the study but changed over time. Beta diversity revealed a time-, CD- and telmisartan-dependent effect. The Firmicutes/Bacteroidetes ratio and the abundance of Blautia, Allobaculum and Parasutterella were higher in DIO and PF than in CON, but not in TEL. Enterotype (ET)-like clustering analyses, Kleinberg's hub network scoring and random forest analyses also indicated that telmisartan induced a specific signature of gut microbiota. In response to stool transfer from telmisartan-pre-treated donor to high-fat fed acceptor mice, body weight gain was slightly attenuated. We attribute the anti-obesity action of telmisartan treatment to diet-independent alterations in gut microbiota as the microbiota from telmisartan-treated, CD-fed rats clearly differed from those of DIO and PF rats. ET-like clustering network, random forest classification and the higher stability in bacterial co-occurrence network analyses indicate that there is more than one indicator species for telmisartan's specific signature, which is further strengthened by the fact that we cannot identify a single indicator species.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Fármacos Antiobesidade/farmacologia , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Telmisartan/farmacologia , Aumento de Peso/efeitos dos fármacos , Animais , Bactérias/crescimento & desenvolvimento , Dieta/efeitos adversos , Modelos Animais de Doenças , Disbiose , Transplante de Microbiota Fecal , Fezes/microbiologia , Camundongos , Obesidade/etiologia , Obesidade/microbiologia , Obesidade/fisiopatologia , Ratos , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498298

RESUMO

Several genetic variants in the mitochondrial genome (mtDNA), including ancient polymorphisms, are associated with chronic inflammatory conditions, but investigating the functional consequences of such mtDNA polymorphisms in humans is challenging due to the influence of many other polymorphisms in both mtDNA and the nuclear genome (nDNA). Here, using the conplastic mouse strain B6-mtFVB, we show that in mice, a maternally inherited natural mutation (m.7778G > T) in the mitochondrially encoded gene ATP synthase 8 (mt-Atp8) of complex V impacts on the cellular metabolic profile and effector functions of CD4+ T cells and induces mild changes in oxidative phosphorylation (OXPHOS) complex activities. These changes culminated in significantly lower disease susceptibility in two models of inflammatory skin disease. Our findings provide experimental evidence that a natural variation in mtDNA influences chronic inflammatory conditions through alterations in cellular metabolism and the systemic metabolic profile without causing major dysfunction in the OXPHOS system.


Assuntos
DNA Mitocondrial/genética , Epidermólise Bolhosa Adquirida/genética , Linfócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Células Cultivadas , Citocinas/metabolismo , Epidermólise Bolhosa Adquirida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética
9.
J Cell Mol Med ; 24(15): 8862-8870, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32643288

RESUMO

The impact of environmental factors, such as diet, and the genetic basis of autoimmune pancreatitis (AIP) are largely unknown. Here, we used an experimental murine AIP model to identify the contribution of diet to AIP development, as well as to fine-map AIP-associated genes in outbred mice prone to develop the disease. For this purpose, we fed mice of an autoimmune-prone intercross line (AIL) three different diets (control, calorie-reduced and western diet) for 6 months, at which point the mice were genotyped and phenotyped for AIP. Overall, 269 out of 734 mice (36.6%) developed AIP with signs of parenchymal destruction, equally affecting mice of both sexes. AIP prevalence and severity were reduced by approximately 50% in mice held under caloric restriction compared to those fed control or western diet. We identified a quantitative trait locus (QTL) on chromosome 4 to be associated with AIP, which is located within a previously reported QTL. This association does not change when considering diet or sex as an additional variable for the mapping. Using whole-genome sequences of the AIL founder strains, we resolved this QTL to a single candidate gene, namely Map3k7. Expression of Map3k7 was largely restricted to islet cells as well as lymphocytes found in the exocrine pancreas of mice with AIP. Our studies suggest a major impact of diet on AIP. Furthermore, we identify Map3k7 as a novel susceptibility gene for experimental AIP. Both findings warrant clinical translation.


Assuntos
Pancreatite Autoimune/etiologia , Dieta/efeitos adversos , Suscetibilidade a Doenças , Predisposição Genética para Doença , Alelos , Animais , Pancreatite Autoimune/diagnóstico , Pancreatite Autoimune/metabolismo , Biomarcadores , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Expressão Gênica , Interação Gene-Ambiente , Genótipo , Imuno-Histoquímica , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Locos de Características Quantitativas , Índice de Gravidade de Doença
10.
J Org Chem ; 85(16): 10695-10708, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806094

RESUMO

Nitrogen and oxygen medium rings, in particular nine-membered rings, epitomize a unique area of chemical space that occurs in many natural products and biologically appealing compounds. The scarcity of 8- to 12-membered rings among clinically approved drugs is indicative of the difficulties associated with their synthesis, principally owing to the unfavorable entropy and transannular strain. We report here a scandium triflate-catalyzed reaction that allows for a modular access to a diverse collection of nine-membered ring heterocycles in a one-pot cascade and with complete diastereocontrol. This cascade features an intramolecular addition of an acyl group-derived enol to a α,ß-unsaturated carbonyl moiety, leading to N- and O-derived medium-ring systems. Computational studies using the density functional theory support the proposed mechanism. Additionally, a one-pot cascade leading to hexacyclic chromeno[3',4':2,3]indolizino[8,7-b]indole architectures, with six fused rings and four contiguous chiral centers, is reported. This novel cascade features many concerted events, including the formation of two azomethine ylides, [3 + 2]-cycloaddition, 1,3-sigmatropic rearrangement, Michael addition, and Pictet-Spengler reaction among others. Phenotypic screening of the resulting oxazonine collection identified chemical probes that regulate mitochondrial membrane potential, adenosine 5'-triphosphate contents, and reactive oxygen species levels in hepatoma cells (Hepa1-6), a promising approach for targeting cancer and metabolic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA