Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Pharmacol Res ; 205: 107231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815878

RESUMO

We previously demonstrated that mice carrying natural mtDNA variants of the FVB/NJ strain (m.7778 G>T in the mt-Atp8 gene in mitochondrial complex V), namely C57BL/6 J-mtFVB/NJ (B6-mtFVB), exhibited (i) partial protection from experimental skin inflammatory diseases in an anti-murine type VII collagen antibody-induced skin inflammation model and psoriasiform dermatitis model; (ii) significantly altered metabolites, including short-chain fatty acids, according to targeted metabolomics of liver, skin and lymph node samples; and (iii) a differential composition of the gut microbiota according to bacterial 16 S rRNA gene sequencing of stool samples compared to wild-type C57BL/6 J (B6) mice. To further dissect these disease-contributing factors, we induced an experimental antibody-induced skin inflammatory disease in gnotobiotic mice. We performed shotgun metagenomic sequencing of caecum contents and untargeted metabolomics of liver, CD4+ T cell, and caecum content samples from conventional B6-mtFVB and B6 mice. We identified D-glucosamine as a candidate mediator that ameliorated disease severity in experimental antibody-induced skin inflammation by modulating immune cell function in T cells, neutrophils and macrophages. Because mice carrying mtDNA variants of the FVB/NJ strain show differential disease susceptibility to a wide range of experimental diseases, including diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice and collagen antibody-induced arthritis in DBA/1 J mice, this experimental approach is valuable for identifying novel therapeutic options for skin inflammatory conditions and other chronic inflammatory diseases to which mice carrying specific mtDNA variants show differential susceptibility.


Assuntos
DNA Mitocondrial , Camundongos Endogâmicos C57BL , Animais , DNA Mitocondrial/genética , Microbioma Gastrointestinal , Camundongos , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Dermatite/imunologia , Dermatite/microbiologia , Dermatite/genética , Dermatite/tratamento farmacológico , Dermatite/metabolismo , Inflamação/genética , Inflamação/imunologia , Modelos Animais de Doenças , Masculino , Vida Livre de Germes , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/genética , Ceco/microbiologia , Doença Crônica , Feminino
2.
J Pathol ; 261(2): 184-197, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37565309

RESUMO

Psoriasis is a chronic inflammatory skin condition. Repeated epicutaneous application of Aldara® (imiquimod) cream results in psoriasiform dermatitis in mice. The Aldara®-induced psoriasiform dermatitis (AIPD) mouse model has been used to examine the pathogenesis of psoriasis. Here, we used a forward genetics approach in which we compared AIPD that developed in 13 different inbred mouse strains to identify genes and pathways that modulated disease severity. Among our primary results, we found that the severity of AIPD differed substantially between different strains of inbred mice and that these variations were associated with polymorphisms in Itga11. The Itga11 gene encodes the integrin α11 subunit that heterodimerizes with the integrin ß1 subunit to form integrin α11ß1. Less information is available about the function of ITGA11 in skin inflammation; however, a role in the regulation of cutaneous wound healing, specifically the development of dermal fibrosis, has been described. Experiments performed with Itga11 gene-deleted (Itga11-/- ) mice revealed that the integrin α11 subunit contributes substantially to the clinical phenotype as well as the histopathological and molecular findings associated with skin inflammation characteristic of AIPD. Although the skin transcriptomes of Itga11-/- and WT mice do not differ from one another under physiological conditions, distinct transcriptomes emerge in these strains in response to the induction of AIPD. Most of the differentially expressed genes contributed to extracellular matrix organization, immune system, and metabolism of lipids pathways. Consistent with these findings, we detected a reduced number of fibroblasts and inflammatory cells, including macrophages, T cells, and tissue-resident memory T cells in skin samples from Itga11-/- mice in response to AIPD induction. Collectively, our results reveal that Itga11 plays a critical role in promoting skin inflammation in AIPD and thus might be targeted for the development of novel therapeutics for psoriasiform skin conditions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Dermatite , Cadeias alfa de Integrinas , Psoríase , Animais , Camundongos , Dermatite/genética , Dermatite/patologia , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Inflamação/patologia , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Psoríase/induzido quimicamente , Psoríase/genética , Pele/patologia
3.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162979

RESUMO

We recently reported on two mouse strains carrying different single nucleotide variations in the mitochondrial complex I gene, i.e., B6-mtBPL mice carrying m.11902T>C and B6-mtALR carrying m.4738C>A. B6-mtBPL mice exhibited a longer lifespan and a lower metabolic disease susceptibility despite mild mitochondrial functional differences in steady-state. As natural polymorphisms in the mitochondrial DNA (mtDNA) are known to be associated with distinct patterns of gut microbial composition, we further investigated the gut microbiota composition in these mice strains. In line with mouse phenotypes, we found a significantly lower abundance of Proteobacteria, which is positively associated with pathological conditions, in B6-mtBPL compared to B6-mtALR mice. A prediction of functional profile of significantly differential bacterial genera between these strains revealed an involvement of glucose metabolism pathways. Whole transcriptome analysis of liver samples from B6-mtBPL and B6-mtALR mice confirmed these findings. Thus, both host gene expression and gut microbial changes caused by the mtDNA variant differences may contribute to the ageing and metabolic phenotypes observed in these mice strains. Since gut microbiota are easier to modulate, compared with mtDNA variants, identification of such mtDNA variants, specific gut bacterial species and bacterial metabolites may be a potential intervention to modulate common diseases, which are differentially susceptible to individuals with different mtDNA variants.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Microbioma Gastrointestinal/genética , Longevidade , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Mitocôndrias/metabolismo
4.
Pharmacol Res ; 170: 105724, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116209

RESUMO

Telmisartan prevents diet-induced obesity (DIO) in rodents. Given that the precise underlying mechanism is not known, we examined whether a gut-related mechanism might be involved. Sprague-Dawley rats received cafeteria diet (CD) for 3 months to develop DIO and were administered either telmisartan (8 mg/kgbw) or vehicle. In addition, pair-fed (PF) rats received CD adjusted to TEL and control rats (CON) only received chow. Stool samples were analysed by 16 S rRNA gene amplicon sequencing. CD-fed rats became obese while TEL, PF and CON rats remained lean. Alpha diversity analyses indicated that bacterial diversity was similar before the study but changed over time. Beta diversity revealed a time-, CD- and telmisartan-dependent effect. The Firmicutes/Bacteroidetes ratio and the abundance of Blautia, Allobaculum and Parasutterella were higher in DIO and PF than in CON, but not in TEL. Enterotype (ET)-like clustering analyses, Kleinberg's hub network scoring and random forest analyses also indicated that telmisartan induced a specific signature of gut microbiota. In response to stool transfer from telmisartan-pre-treated donor to high-fat fed acceptor mice, body weight gain was slightly attenuated. We attribute the anti-obesity action of telmisartan treatment to diet-independent alterations in gut microbiota as the microbiota from telmisartan-treated, CD-fed rats clearly differed from those of DIO and PF rats. ET-like clustering network, random forest classification and the higher stability in bacterial co-occurrence network analyses indicate that there is more than one indicator species for telmisartan's specific signature, which is further strengthened by the fact that we cannot identify a single indicator species.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Fármacos Antiobesidade/farmacologia , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Telmisartan/farmacologia , Aumento de Peso/efeitos dos fármacos , Animais , Bactérias/crescimento & desenvolvimento , Dieta/efeitos adversos , Modelos Animais de Doenças , Disbiose , Transplante de Microbiota Fecal , Fezes/microbiologia , Camundongos , Obesidade/etiologia , Obesidade/microbiologia , Obesidade/fisiopatologia , Ratos , Ratos Sprague-Dawley
5.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498298

RESUMO

Several genetic variants in the mitochondrial genome (mtDNA), including ancient polymorphisms, are associated with chronic inflammatory conditions, but investigating the functional consequences of such mtDNA polymorphisms in humans is challenging due to the influence of many other polymorphisms in both mtDNA and the nuclear genome (nDNA). Here, using the conplastic mouse strain B6-mtFVB, we show that in mice, a maternally inherited natural mutation (m.7778G > T) in the mitochondrially encoded gene ATP synthase 8 (mt-Atp8) of complex V impacts on the cellular metabolic profile and effector functions of CD4+ T cells and induces mild changes in oxidative phosphorylation (OXPHOS) complex activities. These changes culminated in significantly lower disease susceptibility in two models of inflammatory skin disease. Our findings provide experimental evidence that a natural variation in mtDNA influences chronic inflammatory conditions through alterations in cellular metabolism and the systemic metabolic profile without causing major dysfunction in the OXPHOS system.


Assuntos
DNA Mitocondrial/genética , Epidermólise Bolhosa Adquirida/genética , Linfócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Células Cultivadas , Citocinas/metabolismo , Epidermólise Bolhosa Adquirida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética
6.
J Cell Mol Med ; 24(15): 8862-8870, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32643288

RESUMO

The impact of environmental factors, such as diet, and the genetic basis of autoimmune pancreatitis (AIP) are largely unknown. Here, we used an experimental murine AIP model to identify the contribution of diet to AIP development, as well as to fine-map AIP-associated genes in outbred mice prone to develop the disease. For this purpose, we fed mice of an autoimmune-prone intercross line (AIL) three different diets (control, calorie-reduced and western diet) for 6 months, at which point the mice were genotyped and phenotyped for AIP. Overall, 269 out of 734 mice (36.6%) developed AIP with signs of parenchymal destruction, equally affecting mice of both sexes. AIP prevalence and severity were reduced by approximately 50% in mice held under caloric restriction compared to those fed control or western diet. We identified a quantitative trait locus (QTL) on chromosome 4 to be associated with AIP, which is located within a previously reported QTL. This association does not change when considering diet or sex as an additional variable for the mapping. Using whole-genome sequences of the AIL founder strains, we resolved this QTL to a single candidate gene, namely Map3k7. Expression of Map3k7 was largely restricted to islet cells as well as lymphocytes found in the exocrine pancreas of mice with AIP. Our studies suggest a major impact of diet on AIP. Furthermore, we identify Map3k7 as a novel susceptibility gene for experimental AIP. Both findings warrant clinical translation.


Assuntos
Pancreatite Autoimune/etiologia , Dieta/efeitos adversos , Suscetibilidade a Doenças , Predisposição Genética para Doença , Alelos , Animais , Pancreatite Autoimune/diagnóstico , Pancreatite Autoimune/metabolismo , Biomarcadores , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Expressão Gênica , Interação Gene-Ambiente , Genótipo , Imuno-Histoquímica , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Locos de Características Quantitativas , Índice de Gravidade de Doença
7.
J Autoimmun ; 96: 104-112, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219389

RESUMO

IL-17A has been identified as key regulatory molecule in several autoimmune and chronic inflammatory diseases followed by the successful use of anti-IL-17 therapy, e.g. in ankylosing spondylitis and psoriasis. Bullous pemphigoid (BP) is the most frequent autoimmune blistering disease with a high need for more specific, effective and safe treatment options. The aim of this study was to clarify the pathophysiological importance of IL-17A in BP. We found elevated numbers of IL-17A+ CD4+ lymphocytes in the peripheral blood of BP patients and identified CD3+ cells as major source of IL-17A in early BP skin lesions. IL17A and related genes were upregulated in BP skin and exome sequencing of 51 BP patients revealed mutations in twelve IL-17-related genes in 18 patients. We have subsequently found several lines of evidence suggesting a significant role of IL-17A in the BP pathogenesis: (i) IL-17A activated human neutrophils in vitro, (ii) inhibition of dermal-epidermal separation in cryosections of human skin incubated with anti-BP180 IgG and subsequently with anti-IL-17A IgG-treated leukocytes, (iii) close correlation of serum IL-17A levels and diseases activity in a mouse model of BP, (iv) IL17A-deficient mice were protected against autoantibody-induced BP, and (v) pharmacological inhibition of lL-17A reduced the induction of BP in mice. Our data give evidence for a pivotal role of IL-17A in the pathophysiology of BP and advocate IL-17A inhibition as potential novel treatment for this disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-17/metabolismo , Neutrófilos/imunologia , Penfigoide Bolhoso/imunologia , Pele/metabolismo , Animais , Autoanticorpos/imunologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interleucina-17/genética , Camundongos , Camundongos Knockout , Mutação/genética , Ativação de Neutrófilo , Pele/patologia , Sequenciamento do Exoma
8.
Exp Dermatol ; 28(5): 623-627, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30921485

RESUMO

Psoriasis is a chronic inflammatory disorder of the skin, with genetic factors reportedly involved in the disease pathogenesis. Numerous studies reported psoriasis candidate genes. However, these tend to involve mostly in the European and Asian populations. Here, we report the first genome-wide association study (GWAS) in an Egyptian population, identifying susceptibility variants for psoriasis using a two-stage case-control design. In the first discovery stage, we carried out a genome-wide association analysis using the Infinium® Global Screening Array-24 v1.0, on 253 cases and 449 control samples of Egyptian descent. In the second replication stage, 26 single-nucleotide polymorphisms (SNPs) were selected for replication in additional 321 cases and 253 controls. In concordance with the findings from previous studies on other populations, we found a genome-wide significant association between the MHC locus and the disease at rs12199223 (Pcomb  = 6.57 × 10-18 ) and rs1265181 (Pcomb  = 1.03 × 10-10 ). Additionally, we identified a novel significant association with the disease at locus, 4q32.1 (rs12650590, Pcomb  = 4.49 × 10-08 ) in the vicinity of gene GUCY1A3, and multiple suggestive associations, for example rs10832027 (Pcomb  = 7.28 × 10-06 ) and rs3770019 (Pcomb  = 1.02 × 10-05 ). This proposes the existence of important interethnic genetic differences in psoriasis susceptibility. Further studies are necessary to elucidate the downstream pathways of the new candidate loci.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Psoríase/genética , Estudos de Casos e Controles , Egito/epidemiologia , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Inflamação , Complexo Principal de Histocompatibilidade , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Risco
9.
PLoS Genet ; 12(5): e1006008, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27148741

RESUMO

Pemphigus vulgaris (PV) is a life-threatening autoimmune mucocutaneous blistering disease caused by disruption of intercellular adhesion due to auto-antibodies directed against epithelial components. Treatment is limited to immunosuppressive agents, which are associated with serious adverse effects. The propensity to develop the disease is in part genetically determined. We therefore reasoned that the delineation of PV genetic basis may point to novel therapeutic strategies. Using a genome-wide association approach, we recently found that genetic variants in the vicinity of the ST18 gene confer a significant risk for the disease. Here, using targeted deep sequencing, we identified a PV-associated variant residing within the ST18 promoter region (p<0.0002; odds ratio = 2.03). This variant was found to drive increased gene transcription in a p53/p63-dependent manner, which may explain the fact that ST18 is up-regulated in the skin of PV patients. We then discovered that when overexpressed, ST18 stimulates PV serum-induced secretion of key inflammatory molecules and contributes to PV serum-induced disruption of keratinocyte cell-cell adhesion, two processes previously implicated in the pathogenesis of PV. Thus, the present findings indicate that ST18 may play a direct role in PV and consequently represents a potential target for the treatment of this disease.


Assuntos
Pênfigo/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Autoanticorpos/genética , Autoanticorpos/imunologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunossupressores/efeitos adversos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Linhagem , Pênfigo/sangue , Pênfigo/imunologia , Pênfigo/terapia , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/sangue , Fatores de Risco , Pele/metabolismo , Pele/patologia
10.
Int J Mol Sci ; 20(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085998

RESUMO

In this study, we provide experimental evidence that a maternally inherited polymorphism in the mitochondrial cytochrome b gene (mt-Cytb; m.15124A>G, Ile-Val) in mitochondrial complex III resulted in middle-aged obesity and higher susceptibility to diet-induced obesity, as well as age-related inflammatory disease, e.g., ulcerative dermatitis, in mice. As a consequence of the gene variation, we observed alterations in body composition, metabolism and mitochondrial functions, i.e., increased mitochondrial oxygen consumption rate and higher levels of reactive oxygen species, as well as in the commensal bacterial composition in the gut, with higher abundance of Proteobacteria in mice carrying the variant. These observations are in line with the previously described links of the mitochondrial complex III gene with obesity and metabolic diseases in humans. Given that these functional changes by the G variant at m.15124 in the mt-Cytb are already present in young mice that were kept under normal condition, it is plausible that the m.15124A>G variant is a disease susceptibility modifier to the diseases induced by additional stressors, i.e., dietary and/or aging stress, and that the variant results in the higher incidence of clinical diseases presentation in C57BL/6J-mt129S1/SvlmJ than C57BL/6J mice. Thus, mtDNA variants could be potential biomarkers to evaluate the healthspan.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais/genética , Animais , Bacteroidetes/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo , Mutação/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Espécies Reativas de Oxigênio/metabolismo
11.
FASEB J ; 31(11): 4707-4719, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28710114

RESUMO

Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro, caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.


Assuntos
Ritmo Circadiano , Homeostase , Doenças Inflamatórias Intestinais/metabolismo , Animais , Caspases/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Imidazóis/farmacologia , Indóis/farmacologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Mutantes , Mutação , Necrose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia
12.
Exp Dermatol ; 26(12): 1221-1227, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28418589

RESUMO

Bullous pemphigoid (BP) is the most common autoimmune blistering disease in Europe. As both the incidence of the disease and the relative proportion of the elderly population continue to rise, it represents a significant medical burden. Whereas some progress has been achieved in defining genetic risk factors for autoimmune blistering diseases, no environmental agent has been conclusively identified. Emerging evidence suggests that host immunity may influence the skin microbiota, while the latter modulates cutaneous immunity. Nevertheless, the relationship between skin microbial communities and autoimmune bullous disease has yet to be studied in humans. Here, we aim to characterise and compare the skin microbiome of patients with BP and healthy, age-matched controls at numerous body sites. Similar to what has been shown in healthy controls, the composition of skin microbiota in patients with BP appears to be very divergent and site specific. Microbial phylum abundances differ between perilesional sites of patients with BP and the same anatomic locations of control patients. A distinct cutaneous microbiota profile, which correlates with BP, further strengthens the significance of commensal-host interaction on our immune system. Moreover, these results raise the possibility that the cutaneous microbiome may contribute to the pathogenesis of BP, with important implications for the treatment of this disease.


Assuntos
Microbiota , Dermatopatias Vesiculobolhosas/microbiologia , Pele/microbiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Exp Dermatol ; 26(12): 1214-1220, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29136295

RESUMO

Mucous membrane pemphigoid (MMP) is a rare, chronic and often aggressive subepidermal autoimmune blistering disease potentially affecting several mucous membranes with blisters and secondary erosions and scars. The pathogenesis of MMP is poorly understood, and the contribution of genetic predispositions, other than HLA class II allele variants to MMP, is unknown. The objective of this study is to identify susceptibility genes for MMP in a British cohort of MMP patients. A GWAS was conducted in a British cohort of 106 MMP patients. Publicly available genotypes of 2900 blood donors of the UK Blood Service and of 6740 individuals of the 1958 British Birth Cohort served as control. Subsequently, putative susceptibility genes were independently replicated in a German cohort of 42 MMP patients. The GWAS found 38 SNPs in 28 haploblocks with an odds ratio >2 reaching genomewide significance (P < 5.7 × 10-7 ). Replication confirmed an association of MMP with SNPs in rs17203398 (OR: 3.9), located intronically in the ß-galactocerebrosidase gene (GALC) on chromosome 14 and with recessive polymorphisms in rs9936045 (OR: 3.1) in the intergenic region between CASC16 and CHD9 on chromosome 16. The risk of developing MMP is partially genetically determined. SNPs in GALC enhance the risk for MMP, indicating that ß-galactocerebrosidase may be involved in the pathogenesis of MMP. Likewise, impacts of polymorphisms in the intergenic region between CASC16 and CHD9 on the activity of neighbouring genes may facilitate the emergence of MMP. The putative role of both polymorphisms requires functional studies in the future.


Assuntos
Galactosilceramidase/genética , Penfigoide Mucomembranoso Benigno/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 16 , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
BMC Genomics ; 17: 112, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879236

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that control genes at post-transcriptional level. They are essential for development and tissue differentiation, and such altered miRNA expression patterns are linked to the pathogenesis of inflammation and cancer. There is evidence that miRNA expression is genetically controlled similar to the transcription of protein-coding genes and previous studies identified quantitative trait loci (QTL) for miRNA expression in the liver. So far, little attention has been paid to miRNA expression in the skin. Moreover, epistatic control of miRNA expression remains unknown. In this study, we characterize genetic regulation of cutaneous miRNA and their correlation with skin inflammation using a previously established murine autoimmune-prone advanced intercross line. RESULTS: We identified in silico 42 eQTL controlling the expression of 38 cutaneous miRNAs and furthermore found two chromosomal hot-spots on chromosomes 2 and 8 that control the expression of multiple miRNAs. Moreover, for 8 miRNAs an interacting effect from pairs of SNPs was observed. Combining the constraints on genes from the statistical interaction of their loci and further using curated protein interaction networks, the number of candidate genes for association of miRNAs was reduced to a set of several genes. A cluster analysis identified miR-379 and miR-223 to be associated with EBA severity/onset, where miR-379 was observed to be associated to loci on chromosome 6. CONCLUSION: The murine advanced intercross line allowed us to identify the genetic loci regulating multiple miRNA in skin. The recurrence of trans-eQTL and epistasis suggest that cutaneous miRNAs are regulated by yet an unexplored complex gene networks. Further, using co-expression analysis of miRNA expression levels we showed that multiple miRNA contribute to multiple pathways that might be involved in pathogenesis of autoimmune skin blistering disease. Specifically, we provide evidence that miRNA such as miR-223 and miR-379 may play critical role in disease progression and severity.


Assuntos
Doenças Autoimunes/genética , Vesícula/genética , Estudos de Associação Genética , Predisposição Genética para Doença , MicroRNAs/genética , Pele/metabolismo , Animais , Doenças Autoimunes/imunologia , Vesícula/imunologia , Modelos Animais de Doenças , Epistasia Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Pele/patologia , Transcriptoma
16.
BMC Gastroenterol ; 16(1): 118, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27716073

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory disorder of still unknown pathogenesis. Increasing evidence indicates that alterations in mitochondrial respiration and thus adenosine triphosphate (ATP) production are involved. This may contribute to mucosal energy deficiency and subsequently intestinal barrier malfunction, which is accepted to be a major hallmark of UC. Genetic alterations of the mitochondrial genome are one cause of mitochondrial dysfunction. However, less is known about mitochondrial gene polymorphisms in UC. Therefore, we aimed at identifying genetic associations between mitochondrial polymorphisms and UC. METHODS: German UC cases (n = 1062) and German healthy controls (n = 3030) were genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0. The primary association analysis was to test for associations between mitochondrial single nucleotide polymorphisms (SNPs) and UC using Fisher's exact test in the total sample and stratified by sex. In addition, we tested for associations between mitochondrial haplogroups and UC and for interactions between the most promising mitochondrial SNPs and nuclear SNPs. An independent set of German subjects with 1625 UC cases and 3575 controls was used for replication. RESULTS: We identified a genetic association between the MT-ND4 11719 A/G polymorphism and UC in the subgroup of males (rs2853495; odds ratio, 1.40; 95 % confidence interval, 1.13 to 1.73; p = 0.002). This association was replicated in the second independent cohort. In the association analysis based on mitochondrial haplogroups the lowest p values were reached for haplogroups HV and T (p = 0.029 and 0.035). Haplogroup HV is determined by the mitochondrial 11719 A/G polymorphism. Accordingly, this association was only found in the subgroup of males (p = 0.009). CONCLUSIONS: For the first time, we observed an association between the MT-ND4 11719 A/G polymorphism and UC. The gene MT-ND4 encodes for a subunit of the mitochondrial electron transport chain complex I, which is pivotal for ATP production and might therefore contribute to mucosal energy deficiency. The male-specific association indicates differences between males and females concerning the impact of mitochondrial gene polymorphisms on the development of UC. Further investigations of the functional mechanism underlying this association and the relevance of the gender-specificity are highly warranted.


Assuntos
Colite Ulcerativa/genética , Mitocôndrias/genética , NADH Desidrogenase/genética , Polimorfismo de Nucleotídeo Único , Fatores Sexuais , Estudos de Casos e Controles , Colite Ulcerativa/fisiopatologia , Feminino , Estudos de Associação Genética , Genótipo , Técnicas de Genotipagem , Alemanha , Humanos , Mucosa Intestinal/fisiopatologia , Masculino , Mitocôndrias/fisiologia , Razão de Chances
17.
J Pathol ; 237(1): 111-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25953430

RESUMO

Genetic studies have added to the understanding of complex diseases. Here, we used a combined genetic approach for risk-loci identification in a prototypic, organ-specific, autoimmune disease, namely experimental epidermolysis bullosa acquisita (EBA), in which autoantibodies to type VII collagen (COL7) and neutrophil activation cause mucocutaneous blisters. Anti-COL7 IgG induced moderate blistering in most inbred mouse strains, while some showed severe disease or were completely protected. Using publicly available genotyping data, we identified haplotype blocks that control blistering and confirmed two haplotype blocks in outbred mice. To identify the blistering-associated genes, haplotype blocks encoding genes that are differentially expressed in EBA-affected skin were considered. This procedure identified nine genes, including retinoid-related orphan receptor alpha (RORα), known to be involved in neurological development and function. After anti-COL7 IgG injection, RORα+/- mice showed reduced blistering and homozygous mice were completely resistant to EBA induction. Furthermore, pharmacological RORα inhibition dose-dependently blocked reactive oxygen species (ROS) release from activated neutrophils but did not affect migration or phagocytosis. Thus, forward genomics combined with multiple validation steps identifies RORα to be essential to drive inflammation in experimental EBA.


Assuntos
Epidermólise Bolhosa Adquirida/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Pele/metabolismo , Animais , Autoanticorpos/imunologia , Colágeno Tipo VII/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Epidermólise Bolhosa Adquirida/genética , Epidermólise Bolhosa Adquirida/imunologia , Epidermólise Bolhosa Adquirida/patologia , Predisposição Genética para Doença , Genômica/métodos , Haplótipos , Heterozigoto , Homozigoto , Imunoglobulina G/imunologia , Camundongos Knockout , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Especificidade da Espécie , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Fatores de Tempo
18.
Nucleic Acids Res ; 42(22): e167, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25303994

RESUMO

UNLABELLED: Non-coding RNAs (ncRNAs) are known to play important functional roles in the cell. However, their identification and recognition in genomic sequences remains challenging. In silico methods, such as classification tools, offer a fast and reliable way for such screening and multiple classifiers have already been developed to predict well-defined subfamilies of RNA. So far, however, out of all the ncRNAs, only tRNA, miRNA and snoRNA can be predicted with a satisfying sensitivity and specificity. We here present ptRNApred, a tool to detect and classify subclasses of non-coding RNA that are involved in the regulation of post-transcriptional modifications or DNA replication, which we here call post-transcriptional RNA (ptRNA). It (i) detects RNA sequences coding for post-transcriptional RNA from the genomic sequence with an overall sensitivity of 91% and a specificity of 94% and (ii) predicts ptRNA-subclasses that exist in eukaryotes: snRNA, snoRNA, RNase P, RNase MRP, Y RNA or telomerase RNA. AVAILABILITY: The ptRNApred software is open for public use on http://www.ptrnapred.org/.


Assuntos
RNA não Traduzido/classificação , Análise de Sequência de RNA/métodos , Software , Biologia Computacional/métodos , Regulação da Expressão Gênica , RNA não Traduzido/química , Máquina de Vetores de Suporte
19.
Am J Pathol ; 184(9): 2420-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25129256

RESUMO

Impairment of nerve conduction is common in neurodegenerative and neuroinflammatory diseases such as multiple sclerosis (MS), and measurement of evoked potentials (visual, motor, or sensory) has been widely used for diagnosis and recently also as a prognostic marker for MS. We used a classical genetic approach to identify novel genes controlling nerve conduction. First, we used quantitative trait mapping in F2 progeny of B10/SJL mice to identify EAE31, a locus controlling latency of motor evoked potentials (MEPs) and clinical onset of experimental autoimmune encephalomyelitis. Then, by combining congenic mapping, in silico haplotype analyses, and comparative genomics we identified inositol polyphosphate-4-phosphatase, type II (Inpp4b) as the quantitative trait gene for EAE31. Sequence variants of Inpp4b (C/A, exon 13; A/C, exon 14) were identified as differing among multiple mouse strains and correlated with individual cortical MEP latency differences. To evaluate the functional relevance of the amino acid exchanges at positions S474R and H548P, we generated transgenic mice carrying the longer-latency allele (Inpp4b(474R/548P)) in the C57BL/6J background. Inpp4b(474R/548P) mice exhibited significantly longer cortical MEP latencies (4.5 ± 0.22 ms versus 3.7 ± 0.13 ms; P = 1.04 × 10(-9)), indicating that INPP4B regulates nerve conduction velocity. An association of an INPP4B polymorphism (rs13102150) with MS was observed in German and Spanish MS cohorts (3676 controls and 911 cases) (P = 8.8 × 10(-3)).


Assuntos
Potencial Evocado Motor/genética , Esclerose Múltipla/genética , Condução Nervosa/genética , Monoéster Fosfórico Hidrolases/genética , Sequência de Aminoácidos , Animais , Encefalomielite Autoimune Experimental , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Locos de Características Quantitativas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Exp Dermatol ; 24(7): 510-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25827949

RESUMO

Cutaneous lupus erythematosus (CLE) is a chronic autoimmune disease of the skin with typical clinical manifestations. Here, we genotyped 906 600 single nucleotide polymorphisms (SNPs) in 183 CLE cases and 1288 controls of Central European ancestry. Replication was performed for 13 SNPs in 219 case subjects and 262 controls from Finland. Association was particularly pronounced at 4 loci, all with genomewide significance (P < 5 × 10(-8) ): rs2187668 (PGWAS  = 1.4 × 10(-12) ), rs9267531 (PGWAS  = 4.7 × 10(-10) ), rs4410767 (PGWAS  = 1.0 × 10(-9) ) and rs3094084 (PGWAS  = 1.1 × 10(-9) ). All mentioned SNPs are located within the major histocompatibility complex (MHC) region of chromosome 6 and near genes of known immune functions or associations with other autoimmune diseases such as HLA-DQ alpha chain 1 (HLA-DQA1), MICA, MICB, MSH5, TRIM39 and RPP21. For example, TRIM39/RPP21 read through transcript is a known mediator of the interferon response, a central pathway involved in the pathogenesis of CLE and systemic lupus erythematosus (SLE). Taken together, this genomewide analysis of disease association of CLE identified candidate genes and genomic regions that may contribute to pathogenic mechanisms in CLE via dysregulated antigen presentation (HLA-DQA1), apoptosis regulation, RNA processing and interferon response (MICA, MICB, MSH5, TRIM39 and RPP21).


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Cutâneo/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte/genética , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Cromossomos Humanos Par 6/genética , Finlândia , Estudo de Associação Genômica Ampla , Alemanha , Cadeias alfa de HLA-DQ/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Lúpus Eritematoso Cutâneo/imunologia , Complexo Principal de Histocompatibilidade , Ribonuclease P/genética , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA